A novel framework for river organic carbon retrieval through satellite data and machine learning

被引:0
作者
Tian, Shang [1 ,2 ,3 ,4 ]
Sha, Anmeng [1 ,2 ,3 ,4 ]
Luo, Yingzhong [1 ]
Ke, Yutian [5 ]
Spencer, Robert [6 ]
Hu, Xie [7 ]
Ning, Munan [8 ]
Zhao, Yi [1 ]
Deng, Rui [1 ]
Gao, Yang [9 ]
Liu, Yong [1 ]
Li, Dongfeng [1 ,2 ,3 ,4 ]
机构
[1] Peking Univ, Coll Environm Sci & Engn, Key Lab Water & Sediment Sci, Minist Educ, Beijing 100871, Peoples R China
[2] Peking Univ, State Environm Protect Key Lab All Mat Flux River, Beijing 100871, Peoples R China
[3] Peking Univ, Inst Carbon Neutral, Beijing 100871, Peoples R China
[4] Peking Univ, Inst Tibetan Plateau, Beijing 100871, Peoples R China
[5] CALTECH, Div Geol & Planetary Sci, Pasadena, CA USA
[6] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL USA
[7] Peking Univ, Coll Urban & Environm Sci, Beijing 100871, Peoples R China
[8] Peking Univ, Sch Elect & Comp Engn, Shenzhen Grad Sch, Shenzhen, Guangdong, Peoples R China
[9] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
Particulate organic carbon; Dissolved organic; carbon; Remote sensing; Machine learning; River; MATTER CDOM; WATER; PERFORMANCE; INDEX; ABSORPTION; LANDSAT-8; QUALITY; FLUXES; COLOR; LAND;
D O I
10.1016/j.isprsjprs.2025.01.028
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Rivers transport large amounts of carbon, serving as a critical link between terrestrial, coastal, and atmospheric biogeochemical cycles. However, our observations and understanding of long-term river carbon dynamics in large-scale remain limited. Integrating machine learning with remote sensing offers an effective approach for quantifying organic carbon (OC) from space. Here, we develop the Aquatic-Organic Carbon (Aqua-OC), a dynamic machine learning retrieval framework designed to estimate reach-scale river OC using nearly half a century of analysis-ready Landsat archives. We first integrate a globally representative river OC dataset, comprising 299,330 measurements of dissolved organic carbon (DOC) and 101,878 measurements of particulate organic carbon (POC). This dataset is then used to evaluate the performance of four machine learning methods, i. e., random forest (RF), extreme gradient boosting (XGBoost), Support vector regression (SVR), and deep neural network (DNN), using an optical water type classification strategy. We further leverage multimodal input features to enhance the Aqua-OC framework and OC retrieval accuracy by considering various factors related to OC sources and environmental conditions. The results demonstrate that the Aqua-OC can effectively estimate DOC (R2 = 0.68, RMSE = 2.88 mg/L, Bias = 2.63 %, Error = 12.52 %) and POC (R2 = 0.76, RMSE = 1.76 mg/L, Bias = 6.31 %, Error = 21.36 %). Additionally, the Mississippi River Basin case study demonstrates Aqua-OC's capability to map nearly four decades of reach-scale OC changes at a basin scale. This study provides a generalized method for satellite-based river OC retrieval at fine spatial and long-term temporal scales, thus offering an effective tool to quantify the rivers' role in the global carbon cycle.
引用
收藏
页码:109 / 123
页数:15
相关论文
共 84 条
  • [31] Kuhn C., de Matos Valerio A., Ward N., Loken L., Sawakuchi H.O., Kampel M., Richey J., Stadler P., Crawford J., Striegl R., Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity, Remote Sens. Environ., 224, pp. 104-118, (2019)
  • [32] Kutser T., Pierson D.C., Kallio K.Y., Reinart A., Sobek S., Mapping lake CDOM by satellite remote sensing, Remote Sens. Environ., 94, pp. 535-540, (2005)
  • [33] Lee Z., Carder K.L., Arnone R.A., Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters, Appl. Opt., 41, pp. 5755-5772, (2002)
  • [34] Lee Z., Wei J., Voss K., Lewis M., Bricaud A., Huot Y., Hyperspectral absorption coefficient of “pure” seawater in the range of 350–550 nm inverted from remote sensing reflectance, Appl. Opt., 54, pp. 546-558, (2015)
  • [35] Lehner B., Liermann C.R., Revenga C., Vorosmarty C., Fekete B., Crouzet P., Doll P., Endejan M., Frenken K., Magome J., High‐resolution mapping of the world's reservoirs and dams for sustainable river‐flow management, Front. Ecol. Environ., 9, pp. 494-502, (2011)
  • [36] Li D., Lu X., Overeem I., Walling D.E., Syvitski J., Kettner A.J., Bookhagen B., Zhou Y., Zhang T., Exceptional increases in fluvial sediment fluxes in a warmer and wetter High Mountain Asia, Science., 374, pp. 599-603, (2021)
  • [37] Li J., Yu Q., Tian Y.Q., Becker B.L., Remote sensing estimation of colored dissolved organic matter (CDOM) in optically shallow waters, ISPRS J. Photogramm. Remote Sens., 128, pp. 98-110, (2017)
  • [38] Li J., Wang G., Song C., Sun S., Ma J., Wang Y., Guo L., Li D., Recent intensified erosion and massive sediment deposition in Tibetan Plateau rivers, Nat. Commun., 15, (2024)
  • [39] Lin J., Lyu H., Miao S., Pan Y., Wu Z., Li Y., Wang Q., A two-step approach to mapping particulate organic carbon (POC) in inland water using OLCI images, Ecol. Indic., 90, pp. 502-512, (2018)
  • [40] Lin P., Pan M., Wood E.F., Yamazaki D., Allen G.H., A new vector-based global river network dataset accounting for variable drainage density, Sci. Data., 8, (2021)