A novel framework for river organic carbon retrieval through satellite data and machine learning

被引:0
作者
Tian, Shang [1 ,2 ,3 ,4 ]
Sha, Anmeng [1 ,2 ,3 ,4 ]
Luo, Yingzhong [1 ]
Ke, Yutian [5 ]
Spencer, Robert [6 ]
Hu, Xie [7 ]
Ning, Munan [8 ]
Zhao, Yi [1 ]
Deng, Rui [1 ]
Gao, Yang [9 ]
Liu, Yong [1 ]
Li, Dongfeng [1 ,2 ,3 ,4 ]
机构
[1] Peking Univ, Coll Environm Sci & Engn, Key Lab Water & Sediment Sci, Minist Educ, Beijing 100871, Peoples R China
[2] Peking Univ, State Environm Protect Key Lab All Mat Flux River, Beijing 100871, Peoples R China
[3] Peking Univ, Inst Carbon Neutral, Beijing 100871, Peoples R China
[4] Peking Univ, Inst Tibetan Plateau, Beijing 100871, Peoples R China
[5] CALTECH, Div Geol & Planetary Sci, Pasadena, CA USA
[6] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL USA
[7] Peking Univ, Coll Urban & Environm Sci, Beijing 100871, Peoples R China
[8] Peking Univ, Sch Elect & Comp Engn, Shenzhen Grad Sch, Shenzhen, Guangdong, Peoples R China
[9] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
Particulate organic carbon; Dissolved organic; carbon; Remote sensing; Machine learning; River; MATTER CDOM; WATER; PERFORMANCE; INDEX; ABSORPTION; LANDSAT-8; QUALITY; FLUXES; COLOR; LAND;
D O I
10.1016/j.isprsjprs.2025.01.028
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Rivers transport large amounts of carbon, serving as a critical link between terrestrial, coastal, and atmospheric biogeochemical cycles. However, our observations and understanding of long-term river carbon dynamics in large-scale remain limited. Integrating machine learning with remote sensing offers an effective approach for quantifying organic carbon (OC) from space. Here, we develop the Aquatic-Organic Carbon (Aqua-OC), a dynamic machine learning retrieval framework designed to estimate reach-scale river OC using nearly half a century of analysis-ready Landsat archives. We first integrate a globally representative river OC dataset, comprising 299,330 measurements of dissolved organic carbon (DOC) and 101,878 measurements of particulate organic carbon (POC). This dataset is then used to evaluate the performance of four machine learning methods, i. e., random forest (RF), extreme gradient boosting (XGBoost), Support vector regression (SVR), and deep neural network (DNN), using an optical water type classification strategy. We further leverage multimodal input features to enhance the Aqua-OC framework and OC retrieval accuracy by considering various factors related to OC sources and environmental conditions. The results demonstrate that the Aqua-OC can effectively estimate DOC (R2 = 0.68, RMSE = 2.88 mg/L, Bias = 2.63 %, Error = 12.52 %) and POC (R2 = 0.76, RMSE = 1.76 mg/L, Bias = 6.31 %, Error = 21.36 %). Additionally, the Mississippi River Basin case study demonstrates Aqua-OC's capability to map nearly four decades of reach-scale OC changes at a basin scale. This study provides a generalized method for satellite-based river OC retrieval at fine spatial and long-term temporal scales, thus offering an effective tool to quantify the rivers' role in the global carbon cycle.
引用
收藏
页码:109 / 123
页数:15
相关论文
共 84 条
  • [1] Allen G.H., Pavelsky T.M., Global extent of rivers and streams, Science., 361, pp. 585-588, (2018)
  • [2] Battin T.J., Lauerwald R., Bernhardt E.S., Bertuzzo E., Gener L.G., Hall R.O., Hotchkiss E.R., Maavara T., Pavelsky T.M., Ran L., River ecosystem metabolism and carbon biogeochemistry in a changing world, Nature., 613, pp. 449-459, (2023)
  • [3] Bauer J.E., Cai W.-J., Raymond P.A., Bianchi T.S., Hopkinson C.S., Regnier P.A., The changing carbon cycle of the coastal ocean, Nature., 504, pp. 61-70, (2013)
  • [4] Bianchi T.S., Mayer L.M., Amaral J.H., Arndt S., Galy V., Kemp D.B., Kuehl S.A., Murray N.J., Regnier P., Anthropogenic impacts on mud and organic carbon cycling, Nat. Geosci., pp. 1-11, (2024)
  • [5] Bonelli A.G., Loisel H., Jorge D.S., Mangin A., d'Andon O.F., Vantrepotte V., A new method to estimate the dissolved organic carbon concentration from remote sensing in the global open ocean, Remote Sens. Environ., 281, (2022)
  • [6] Chen T., Guestrin C., Xgboost: A scalable tree boosting system, Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794, (2016)
  • [7] Dean J.F., Battin T.J., Future directions for river carbon biogeochemistry observations, Nat. Water., 2, pp. 219-222, (2024)
  • [8] Delprat L., Chassin P., Lineres M., Jambert C., Characterization of dissolved organic carbon in cleared forest soils converted to maize cultivation, Eur. J. Agron., 7, pp. 201-210, (1997)
  • [9] Dethier E., Renshaw C., Magilligan F., Toward improved accuracy of remote sensing approaches for quantifying suspended sediment: Implications for suspended‐sediment monitoring, J. Geophys. Res.: Earth Surf., 125, (2020)
  • [10] Dethier E.N., Sartain S.L., Lutz D.A., Heightened levels and seasonal inversion of riverine suspended sediment in a tropical biodiversity hot spot due to artisanal gold mining, Proc. Natl. Acad. Sci., 116, pp. 23936-23941, (2019)