Impact of Plant Growth-Promoting Microorganism (PGPM) Consortium on Biochemical Properties and Yields of Tomato Under Drought Stress

被引:3
|
作者
Krishna, Ram [1 ,2 ]
Ansari, Waquar Akhter [1 ,3 ]
Altaf, Mohammad [4 ]
Jaiswal, Durgesh Kumar [5 ]
Pandey, Sudhakar [1 ]
Singh, Achuit Kumar [1 ]
Kumar, Sudhir [1 ]
Verma, Jay Prakash [2 ]
机构
[1] ICAR Indian Inst Vegetable Res, Varanasi 221305, Uttar Pradesh, India
[2] Banaras Hindu Univ, Inst Environm & Sustainable Dev, Varanasi 221005, Uttar Pradesh, India
[3] Marwadi Univ, Res Ctr, Morbi Rd, Rajkot 360003, Gujarat, India
[4] King Saud Univ, Coll Sci, Dept Chem, POB 2455, Riyadh 11451, Saudi Arabia
[5] Graph Era Deemed Univ, Dept Biotechnol, Dehra Dun 248002, Uttarakhand, India
来源
LIFE-BASEL | 2024年 / 14卷 / 10期
关键词
tomato; drought; PGPM; growth attributes; soil physico-biological properties; TRICHODERMA-HARZIANUM; PROCESSING TOMATO; RESPONSES; WATER; RHIZOBACTERIA; TOLERANCE; RICE; L; AGRICULTURE; EXPRESSION;
D O I
10.3390/life14101333
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Drought is the most important abiotic stress that restricts the genetically predetermined yield potential of the crops. In the present study, four tomato varieties: Kashi Vishesh, Kashi Aman, Kashi Abhiman, and Kashi Amrit, were used to study the effect of PGPMs (plant growth-promoting microorganisms). PGPM strains, Bacillus megaterium BHUPSB14, Pseudomonas fluorescens BHUPSB06, Pseudomonas aeruginosa BHUPSB01, Pseudomonas putida BHUPSB0, Paenibacillus polymixa BHUPSB17, and Trichoderma horzianum, were used as the consortium. The control group was irrigated up to 80% of field capacity, while 7-, 14-, and 21-day water-deficit-exposed (DWD) plants' pot soil moisture was maintained to 40, 25, and 15% of the field capacity, both with and without the PGPM inoculation condition. The physiological parameters, such as electrolyte leakage, relative water content, photosynthetic efficiency, and chlorophyll color index, were significantly improved by PGPM application under progressive drought stress, compared to the control. PGPM application enhanced the proline accumulation and reduced the formation of hydrogen peroxide and lipid peroxidation under drought stress. The plant growth attributes were significantly increased by PGPM application. The Kashi Amrit variety showed the highest fruit yield among the four varieties under all the treatments. The PGPM consortium application also improved the soil physico-biological properties and nutrient availability in the soil. The PGPM consortium used in this study can potentially mitigate drought stress on tomato in drought-prone regions and act as a biofertilizer. The present study will open a new avenue of drought stress management in tomato.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Potential roles of plant growth-promoting microbes in wheat adaptation and tolerance to herbicide and drought stress combination
    Lastochkina, Oksana
    Bosacchi, Massimo
    TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 2023, 47 (05) : 688 - 712
  • [32] Appraisal for organic amendments and plant growth-promoting rhizobacteria to enhance crop productivity under drought stress: A review
    Ullah, Naseer
    Ditta, Allah
    Imtiaz, Muhammad
    Li, Xiaomin
    Jan, Amin Ullah
    Mehmood, Sajid
    Rizwan, Muhammad Shahid
    Rizwan, Muhammad
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2021, 207 (05) : 783 - 802
  • [33] Efforts towards overcoming drought stress in crops: Revisiting the mechanisms employed by plant growth-promoting bacteria
    Fadiji, Ayomide Emmanuel
    Santoyo, Gustavo
    Yadav, Ajar Nath
    Babalola, Olubukola Oluranti
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [34] Plant Growth-Promoting Bacterial Consortia as a Strategy to Alleviate Drought Stress in Spinacia oleracea
    Petrillo, Claudia
    Vitale, Ermenegilda
    Ambrosino, Patrizia
    Arena, Carmen
    Isticato, Rachele
    MICROORGANISMS, 2022, 10 (09)
  • [35] Biofilm Producing Rhizobacteria With Multiple Plant Growth-Promoting Traits Promote Growth of Tomato Under Water-Deficit Stress
    Haque, Md Manjurul
    Mosharaf, Md Khaled
    Khatun, Moriom
    Haque, Md Amdadul
    Biswas, Md Sanaullah
    Islam, Md Shahidul
    Islam, Md Mynul
    Shozib, Habibul Bari
    Miah, Md Main Uddin
    Molla, Abul Hossain
    Siddiquee, Muhammad Ali
    FRONTIERS IN MICROBIOLOGY, 2020, 11
  • [36] Impact of Plant Growth-Promoting Rhizobacteria Inoculation and Grafting on Tolerance of Tomato to Combined Water and Nutrient Stress Assessed via Metabolomics Analysis
    Kalozoumis, Panagiotis
    Savvas, Dimitrios
    Aliferis, Konstantinos
    Ntatsi, Georgia
    Marakis, George
    Simou, Evridiki
    Tampakaki, Anastasia
    Karapanos, Ioannis
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [37] Isolation of Endophytic Salt-Tolerant Plant Growth-Promoting Rhizobacteria From Oryza sativa and Evaluation of Their Plant Growth-Promoting Traits Under Salinity Stress Condition
    Jhuma, Tania Akter
    Rafeya, Jannatul
    Sultana, Shahnaz
    Rahman, Mohammad Tariqur
    Karim, Muhammad Manjurul
    FRONTIERS IN SUSTAINABLE FOOD SYSTEMS, 2021, 5
  • [38] Growth behavior of tomato (Solanum lycopersicum L.) under drought stress in the presence of silicon and plant growth promoting rhizobacteria
    Ullah, Ubaid
    Ashraf, Muhammad
    Shahzad, Sher Muhammad
    Siddiqui, Ali Raza
    Piracha, Muhammad Awais
    Suleman, Muhammad
    SOIL & ENVIRONMENT, 2016, 35 (01) : 65 - 75
  • [39] Plant growth-promoting bacteria delayed wilting and improved tomato yield when grown under water stress condition
    Taiwo, Michael Oluwambe
    Akintokun, Aderonke Kofoworola
    JOURNAL OF PLANT NUTRITION, 2025,
  • [40] Performance of plant growth-promoting bacterium of duckweed under different kinds of abiotic stress factors
    Ishizawa, Hidehiro
    Tada, Minami
    Kuroda, Masashi
    Inoue, Daisuke
    Ike, Michihiko
    BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 2019, 19