Impact of Plant Growth-Promoting Microorganism (PGPM) Consortium on Biochemical Properties and Yields of Tomato Under Drought Stress

被引:4
作者
Krishna, Ram [1 ,2 ]
Ansari, Waquar Akhter [1 ,3 ]
Altaf, Mohammad [4 ]
Jaiswal, Durgesh Kumar [5 ]
Pandey, Sudhakar [1 ]
Singh, Achuit Kumar [1 ]
Kumar, Sudhir [1 ]
Verma, Jay Prakash [2 ]
机构
[1] ICAR Indian Inst Vegetable Res, Varanasi 221305, Uttar Pradesh, India
[2] Banaras Hindu Univ, Inst Environm & Sustainable Dev, Varanasi 221005, Uttar Pradesh, India
[3] Marwadi Univ, Res Ctr, Morbi Rd, Rajkot 360003, Gujarat, India
[4] King Saud Univ, Coll Sci, Dept Chem, POB 2455, Riyadh 11451, Saudi Arabia
[5] Graph Era Deemed Univ, Dept Biotechnol, Dehra Dun 248002, Uttarakhand, India
来源
LIFE-BASEL | 2024年 / 14卷 / 10期
关键词
tomato; drought; PGPM; growth attributes; soil physico-biological properties; TRICHODERMA-HARZIANUM; PROCESSING TOMATO; RESPONSES; WATER; RHIZOBACTERIA; TOLERANCE; RICE; L; AGRICULTURE; EXPRESSION;
D O I
10.3390/life14101333
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Drought is the most important abiotic stress that restricts the genetically predetermined yield potential of the crops. In the present study, four tomato varieties: Kashi Vishesh, Kashi Aman, Kashi Abhiman, and Kashi Amrit, were used to study the effect of PGPMs (plant growth-promoting microorganisms). PGPM strains, Bacillus megaterium BHUPSB14, Pseudomonas fluorescens BHUPSB06, Pseudomonas aeruginosa BHUPSB01, Pseudomonas putida BHUPSB0, Paenibacillus polymixa BHUPSB17, and Trichoderma horzianum, were used as the consortium. The control group was irrigated up to 80% of field capacity, while 7-, 14-, and 21-day water-deficit-exposed (DWD) plants' pot soil moisture was maintained to 40, 25, and 15% of the field capacity, both with and without the PGPM inoculation condition. The physiological parameters, such as electrolyte leakage, relative water content, photosynthetic efficiency, and chlorophyll color index, were significantly improved by PGPM application under progressive drought stress, compared to the control. PGPM application enhanced the proline accumulation and reduced the formation of hydrogen peroxide and lipid peroxidation under drought stress. The plant growth attributes were significantly increased by PGPM application. The Kashi Amrit variety showed the highest fruit yield among the four varieties under all the treatments. The PGPM consortium application also improved the soil physico-biological properties and nutrient availability in the soil. The PGPM consortium used in this study can potentially mitigate drought stress on tomato in drought-prone regions and act as a biofertilizer. The present study will open a new avenue of drought stress management in tomato.
引用
收藏
页数:20
相关论文
共 55 条
[1]   Nutritional Composition and Bioactive Compounds in Tomatoes and Their Impact on Human Health and Disease: A Review [J].
Ali, Md Yousuf ;
Sina, Abu Ali Ibn ;
Khandker, Shahad Saif ;
Neesa, Lutfun ;
Tanvir, E. M. ;
Kabir, Alamgir ;
Khalil, Md Ibrahim ;
Gan, Siew Hua .
FOODS, 2021, 10 (01)
[2]  
Alwhibi MS, 2017, J INTEGR AGR, V16, P1751, DOI [10.1016/S2095-3119(17)61695-2, 10.1016/s2095-3119(17)61695-2]
[3]   Agricultural ammonia emissions and ammonium concentrations associated with aerosols and precipitation in the southeast United States [J].
Aneja, VP ;
Nelson, DR ;
Roelle, PA ;
Walker, JT ;
Battye, W .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D4)
[4]   Morpho-physiological and biochemical responses of muskmelon genotypes to different degree of water deficit [J].
Ansari, W. A. ;
Atri, N. ;
Singh, B. ;
Kumar, P. ;
Pandey, S. .
PHOTOSYNTHETICA, 2018, 56 (04) :1019-1030
[5]   Drought mediated physiological and molecular changes in muskmelon (Cucumis melo L.) [J].
Ansari, Waquar Akhter ;
Atri, Neelam ;
Ahmad, Javed ;
Qureshi, Mohammad Irfan ;
Singh, Bijendra ;
Kumar, Ram ;
Rai, Vandna ;
Pandey, Sudhakar .
PLOS ONE, 2019, 14 (09)
[6]  
Ansary M. H., 2012, Annals of Biological Research, V3, P1054
[7]   Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.) [J].
Arshad, M. ;
Shaharoona, B. ;
Mahmood, T. .
PEDOSPHERE, 2008, 18 (05) :611-620
[8]   YIELD AND QUALITY OF MYCORRHIZED PROCESSING TOMATO UNDER WATER SCARCITY [J].
Bakr, J. ;
Daood, H. G. ;
Pek, Z. ;
Helyes, L. ;
Posta, K. .
APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2017, 15 (01) :401-413
[9]   RAPID DETERMINATION OF FREE PROLINE FOR WATER-STRESS STUDIES [J].
BATES, LS ;
WALDREN, RP ;
TEARE, ID .
PLANT AND SOIL, 1973, 39 (01) :205-207
[10]  
CASIDA L. E., 1964, SOIL SCI, V98, P371, DOI 10.1097/00010694-196412000-00004