Morin Reactivates Nrf2 by Targeting Inhibition of Keap1 to Alleviate Deoxynivalenol-Induced Intestinal Oxidative Damage

被引:1
|
作者
Zan, Gengxiu [1 ]
He, Hui [1 ]
Wang, Xiaofan [1 ]
Zhou, Jiayi [1 ]
Wang, Xiuqi [1 ]
Yan, Huichao [1 ]
机构
[1] South China Agr Univ, Coll Anim Sci, Natl Engn Res Ctr Breeding Swine Ind, State Key Lab Swine & Poultry Breeding Ind,Guangdo, Guangzhou 510642, Peoples R China
基金
中国国家自然科学基金;
关键词
deoxynivalenol; Morin; intestinal stem cells; oxidative stress; Keap1/Nrf2 signaling pathway; HO-1; EXPRESSION; STRESS; ANTIOXIDANT; INDUCTION;
D O I
10.3390/ijms26031086
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
As a prevalent mycotoxin found in cereal foods and feed, deoxynivalenol (DON) disrupts the orderly regeneration of intestinal epithelial tissue by interfering with the intracellular antioxidant defense system. However, the potential of mulberry leaf-derived Morin, a natural flavonoid active substance with clearing reactive oxygen species (ROS), to mitigate DON-induced intestinal oxidative damage remains unclear. Our investigation demonstrates that Morin effectively reverses the decline in growth performance and repairs damaged jejunal structures and barrier function under DON exposure. Furthermore, the proliferation and differentiation of intestinal stem cells (ISCs) is enhanced significantly after Morin intervention. Importantly, Morin increases the levels of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) in the serum and jejunal tissue, while reducing the accumulation of ROS and malondialdehyde (MDA). Molecular interaction analysis further confirms that Morin targets inhibition of Keap1 to activate the Nrf2-mediated antioxidant system. In summary, our results suggest that Morin alleviates the oxidative damage induced by DON by regulating the Keap1/Nrf2 pathway, thereby restoring the proliferation and differentiation activity of ISC, which provides new insights into Morin mitigating DON damage.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Pterostilbene-mediated Nrf2 activation: Mechanistic insights on Keap1:Nrf2 interface
    Bhakkiyalakshmi, Elango
    Dineshkumar, Kesavan
    Karthik, Suresh
    Sireesh, Dornadula
    Hopper, Waheeta
    Paulmurugan, Ramasamy
    Ramkumar, Kunka Mohanram
    BIOORGANIC & MEDICINAL CHEMISTRY, 2016, 24 (16) : 3378 - 3386
  • [32] The Role of the Keap1/Nrf2 Pathway in the Cellular Response to Methylmercury
    Kumagai, Yoshito
    Kanda, Hironori
    Shinkai, Yasuhiro
    Toyama, Takashi
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2013, 2013
  • [33] MCL attenuates atherosclerosis by suppressing macrophage ferroptosis via targeting KEAP1/NRF2 interaction
    Luo, Xing
    Wang, Yuehong
    Zhu, Xinxin
    Chen, Yuwu
    Xu, Biyi
    Bai, Xiaoxuan
    Weng, Xiuzhu
    Xu, Jinmei
    Tao, Yangyang
    Yang, Dan
    Du, Jie
    Lv, Ying
    Zhang, Shan
    Hu, Sining
    Li, Ji
    Jia, Haibo
    REDOX BIOLOGY, 2024, 69
  • [34] The Role of NRF2/KEAP1 Pathway in Glioblastoma: Pharmacological Implications
    Shahcheraghi, Seyed Hossein
    Salemi, Fateme
    Alam, Waqas
    Ashworth, Henry
    Saso, Luciano
    Khan, Haroon
    Lotfi, Marzieh
    MEDICAL ONCOLOGY, 2022, 39 (05)
  • [35] WIP Modulates Oxidative Stress through NRF2/KEAP1 in Glioblastoma Cells
    Escoll, Maribel
    Lastra, Diego
    Robledinos-Anton, Natalia
    Wandosell, Francisco
    Anton, Ines Maria
    Cuadrado, Antonio
    ANTIOXIDANTS, 2020, 9 (09) : 1 - 13
  • [36] Targeting KEAP1/Nrf2, AKT, and PPAR-? signals as a potential protective mechanism of diosmin against gentamicin-induced nephrotoxicity
    Ali, Fares E. M.
    Sayed, Ahmed M.
    El-Bahrawy, Ali H.
    Omar, Zainab M. M.
    Hassanein, Emad H. M.
    LIFE SCIENCES, 2021, 275
  • [37] Icaritin activates Nrf2/Keap1 signaling to protect neuronal cells from oxidative stress
    Xu, Yuyu
    Lu, Xiaoyan
    Zhang, Li
    Wang, Lijuan
    Zhang, Guimin
    Yao, Jingchun
    Sun, Chenghong
    CHEMICAL BIOLOGY & DRUG DESIGN, 2021, 97 (01) : 111 - 120
  • [38] Keap1/Nrf2 Signaling: A New Player in Thyroid Pathophysiology and Thyroid Cancer
    Renaud, Cedric O.
    Ziros, Panos G.
    Chartoumpekis, Dionysios, V
    Bongioyanni, Massimo
    Sykiotis, Gerasimos P.
    FRONTIERS IN ENDOCRINOLOGY, 2019, 10
  • [39] MiR-7 involves the activation of Nrf2 pathway by targeting Keap1 in epileptic seizure
    Yu, Liang
    Sun, Hongbin
    He, Baomin
    Li, Supin
    Ma, Shuai
    Yang, Lili
    Guo, Yi
    Zhou, Dong
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2016, 9 (02): : 1713 - 1719
  • [40] Oxidative Stress and NRF2/KEAP1/ARE Pathway in Diabetic Kidney Disease (DKD): New Perspectives
    Tanase, Daniela Maria
    Gosav, Evelina Maria
    Anton, Madalina Ioana
    Floria, Mariana
    Isac, Petronela Nicoleta Seritean
    Hurjui, Loredana Liliana
    Tarniceriu, Claudia Cristina
    Costea, Claudia Florida
    Ciocoiu, Manuela
    Rezus, Ciprian
    BIOMOLECULES, 2022, 12 (09)