Numerical integration on spherical triangles by means of cubic interpolation

被引:0
作者
Baramidze, Victoria [1 ]
Baramidze, Gregory [2 ]
机构
[1] Western Illinois Univ, Dept Math & Philosophy, 1 Univ Circle, Macomb, IL 61455 USA
[2] Western Illinois Univ, Sch Comp Sci, 1 Univ Circle, Macomb, IL 61455 USA
关键词
Numerical integration; Spherical Bernstein-Bezier polynomials;
D O I
10.1007/s12190-024-02360-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a numerical quadrature formula for integrating a spherical homogeneous Bernstein-Bezier polynomial p over a spherical triangle T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}$$\end{document}. The spherical polynomial is projected onto a planar triangle and is interpolated by a bivariate Bernstein-Bezier cubic polynomial q. Integrating q exactly allows us to express the original integral as a linear combination of the coefficients of p with the respective weights defined explicitly. The weights depend on the vertices of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}$$\end{document} and the degree of p. The approximating formula is symmetric with respect to the vertices of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}$$\end{document}. The method is easily adapted for integrating algebraically defined functions. For sufficiently smooth functions the error in the approximation is bounded by the power six of the size of the triangle. The approximation accuracy is further improved by splitting the domain triangle, effectively decreasing the error by a factor of 16 with each split. Additionally, the method conveniently couples with Richardson extrapolation, further reducing the error. Numerical experiments demonstrate the accuracy and computational effectiveness of the method.
引用
收藏
页码:3601 / 3624
页数:24
相关论文
共 17 条
[1]  
Alfeld P, 1996, COMPUT AIDED GEOM D, V13, P333, DOI 10.1016/0167-8396(95)00030-5
[2]   Fitting scattered data on sphere-like surfaces using spherical splines [J].
Alfeld, P ;
Neamtu, M ;
Schumaker, LL .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 73 (1-2) :5-43
[3]   NUMERICAL-INTEGRATION ON THE SPHERE [J].
ATKINSON, K .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1982, 23 (JAN) :332-347
[4]  
Atkinson K., 2012, SPHERICAL HARMONICS, DOI [10.1007/978-3-642-25983-81254.41015, DOI 10.1007/978-3-642-25983-81254.41015]
[5]   Spherical splines for data interpolation and fitting [J].
Baramidze, V ;
Lai, MJ ;
Shum, CK .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (01) :241-259
[6]  
Baramidze V., 2005, SPHERICAL SPLINE SOL, P75
[7]   Local numerical integration on the sphere [J].
Beckmann J. ;
Mhaskar H.N. ;
Prestin J. .
GEM - International Journal on Geomathematics, 2014, 5 (02) :143-162
[8]  
Boal N., 2004, MONOGR SEMIN MAT GAR, P61
[9]  
Dai F., 2013, APPROXIMATION THEORY, DOI 10.1007/978-1-4614-6660-4
[10]  
Lai M.-J., 2007, Spline functions on triangulations, V110, DOI [10.1017/CBO9780511721588, DOI 10.1017/CBO9780511721588]