Structural investigation of alkali aluminoborosilicate glass containing MoO3 for vitrification of nuclear waste

被引:0
作者
Kim, Seon-jin [1 ]
Yeo, Tae-min [2 ]
Hyun, Sung-hee [3 ]
Lee, Jisun [4 ]
Cho, Jung-wook [1 ,4 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Div Adv Nucl Engn DANE, Pohang 37673, South Korea
[2] Seoul Natl Univ, Res Inst Basic Sci, Seoul 08826, South Korea
[3] POSCO, Steelmaking Res Grp, Pohang 37859, South Korea
[4] Pohang Univ Sci & Technol POSTECH, Grad Inst Ferrous & Eco Mat Technol, Pohang 37673, South Korea
关键词
Molybdenum; Aluminoborosilicate glass; Glass structure; Nuclear waste vitrification; IRON MOLYBDATE CATALYST; MAS NMR; CALCIUM ALUMINOSILICATE; SILICATE-GLASSES; STATE; RAMAN; MOLYBDENUM; XPS;
D O I
10.1016/j.jnoncrysol.2025.123387
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Molybdenum poses challenges due to its low solubility and propensity for undesirable crystallization in nuclear waste glasses. An increased concentration of MoO3 promotes the formation of crystalline phases within the glass matrix, potentially compromising the long-term stability of nuclear waste glasses. This study explored the impact of incorporating various alkali cations into Mo-containing aluminoborosilicate glasses, employing various spectroscopies. We found that incorporating larger alkali cations promotes a more polymerized silicate network, consequently reducing the crystallization tendency. Spectroscopic analysis suggests the structural modification of Mo units with the incorporation of larger alkali cations, presenting two potential structural adjustments. Both scenarios facilitate the direct linkage of Mo units to the silicate network (Mo-O-Si), in alignment with Pauling's stability rule. The formation of Mo-O-Si bonds not only improves the solubility of Mo in glass but also prevents the crystallization of Mo-containing phases by inhibiting the formation of nucleation seeds, MoO42- entities.
引用
收藏
页数:10
相关论文
共 43 条
[31]  
Sawaguchi N, 1996, PHYS CHEM GLASSES, V37, P13
[32]   Liquid-liquid phase separation in borosilicate glass enriched in MoO3-experimental investigations and thermodynamic calculations [J].
Schuller, Sophie ;
Benigni, Pierre ;
Gosse, Stephane ;
Begaud-Bordier, Sebastien ;
Mikaelian, Georges ;
Podor, Renaud ;
Rogez, Jacques .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2023, 600
[33]   REVISED EFFECTIVE IONIC-RADII AND SYSTEMATIC STUDIES OF INTERATOMIC DISTANCES IN HALIDES AND CHALCOGENIDES [J].
SHANNON, RD .
ACTA CRYSTALLOGRAPHICA SECTION A, 1976, 32 (SEP1) :751-767
[34]   Characterization of the structure of calcium alumino-silicate and calcium fluoro-alumino-silicate glasses by magic angle spinning nuclear magnetic resonance (MAS-NMR) [J].
Stamboulis, A ;
Hill, RG ;
Law, RV .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2004, 333 (01) :101-107
[35]   Incorporation limit of MoO3 in sodium borosilicate glasses [J].
Sukenaga, Sohei ;
Unozawa, Hiroki ;
Chiba, Yuki ;
Tashiro, Masanori ;
Kawanishi, Sakiko ;
Shibata, Hiroyuki .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2023, 106 (01) :293-305
[37]   MoO3 incorporation in magnesium aluminosilicate glasses [J].
Tan, Shengheng ;
Ojovan, Michael I. ;
Hyatt, Neil C. ;
Hand, Russell J. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 458 :335-342
[38]   Effect of modifier cation size on the structure, properties and nickel speciation in BK7 type alkali borosilicate glasses [J].
Topper, Brian ;
Greiner, Lucas ;
Youngman, Randall E. ;
Stohr, Darren ;
Kamitsos, Efstratios I. ;
Moncke, Doris .
JOURNAL OF NON-CRYSTALLINE SOLIDS-X, 2023, 17
[39]  
Vernaz E, 2012, COMPREHENSIVE NUCLEAR MATERIALS, VOL 5: MATERIAL PERFORMANCE AND CORROSION/WASTE MATERIALS, P451
[40]   Structural investigation of Li2O-B2O3-MoO3 glasses and high-temperature solutions: toward understanding the mechanism of flux-induced growth of lithium triborate crystal [J].
Wang, Di ;
Zhang, Ji ;
Zhang, Deming ;
Wan, Songming ;
Zhang, Qingli ;
Sun, Dunlu ;
Yin, Shaotang .
CRYSTENGCOMM, 2013, 15 (02) :356-364