Massive Digital Over-the-Air Computation for Communication-Efficient Federated Edge Learning

被引:4
作者
Qiao, Li [1 ,2 ]
Gao, Zhen [3 ,4 ,5 ,6 ]
Mashhadi, Mahdi Boloursaz [2 ]
Gunduz, Deniz [7 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Univ Surrey, Inst Commun Syst ICS, 5GIC & 6GIC, Guildford GU2 7XH, England
[3] Beijing Inst Technol Zhuhai, Zhuhai 519088, Peoples R China
[4] Beijing Inst Technol, MIIT Key Lab, Complex Field Intelligent Sensing, Beijing 100081, Peoples R China
[5] Beijing Inst Technol, Yangtze Delta Reg Acad, Jiaxing 314000, Peoples R China
[6] Beijing Inst Technol, Adv Technol Res Inst, Jinan 250307, Peoples R China
[7] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
基金
英国科研创新办公室; 中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Quantization (signal); Computational modeling; Wireless networks; Vectors; Modulation; Atmospheric modeling; Artificial intelligence; Artificial intelligence of things (AIoT); digital over-the-air computation; unsourced massive access; federated edge learning; distributed optimization;
D O I
10.1109/JSAC.2024.3431572
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Over-the-air computation (AirComp) is a promising technology converging communication and computation over wireless networks, which can be particularly effective in model training, inference, and more emerging edge intelligence applications. AirComp relies on uncoded transmission of individual signals, which are added naturally over the multiple access channel thanks to the superposition property of the wireless medium. Despite significantly improved communication efficiency, how to accommodate AirComp in the existing and future digital communication networks, that are based on discrete modulation schemes, remains a challenge. This paper proposes a massive digital AirComp (MD-AirComp) scheme, that leverages an unsourced massive access protocol, to enhance compatibility with both current and next-generation wireless networks. MD-AirComp utilizes vector quantization to reduce the uplink communication overhead, and employs shared quantization and modulation codebooks. At the receiver, we propose a near-optimal approximate message passing-based algorithm to compute the model aggregation results from the superposed sequences, which relies on estimating the number of devices transmitting each code sequence, rather than trying to decode the messages of individual transmitters. We apply MD-AirComp to federated edge learning (FEEL), and show that it significantly accelerates FEEL convergence compared to state-of-the-art while using the same amount of communication resources.
引用
收藏
页码:3078 / 3094
页数:17
相关论文
共 50 条
  • [21] Reconfigurable Intelligent Surface Empowered Over-the-Air Federated Edge Learning
    Liu, Hang
    Lin, Zehong
    Yuan, Xiaojun
    Zhang, Ying-Jun Angela
    [J]. IEEE WIRELESS COMMUNICATIONS, 2023, 30 (06) : 111 - 118
  • [22] Over-the-Air Clustered Federated Learning
    Sami, Hasin Us
    Guler, Basak
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (07) : 7877 - 7893
  • [23] Federated Learning Over-the-Air by Retransmissions
    Hellstrom, Henrik
    Fodor, Viktoria
    Fischione, Carlo
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (12) : 9143 - 9156
  • [24] Integrated Sensing, Communication, and Computation for Over-the-Air Federated Learning in 6G Wireless Networks
    Du, Mengxuan
    Zheng, Haifeng
    Gao, Min
    Feng, Xinxin
    Hu, Jinsong
    Chen, Youjia
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (21): : 35551 - 35567
  • [25] Over-the-Air Federated Learning and Optimization
    Zhu, Jingyang
    Shi, Yuanming
    Zhou, Yong
    Jiang, Chunxiao
    Chen, Wei
    Letaief, Khaled B.
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (10): : 16996 - 17020
  • [26] Multiple Parallel Federated Learning via Over-the-Air Computation
    Shi, Gaoxin
    Guo, Shuaishuai
    Ye, Jia
    Saeed, Nasir
    Dang, Shuping
    [J]. IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2022, 3 : 1252 - 1264
  • [27] Coded Over-the-Air Computation for Model Aggregation in Federated Learning
    Zhang, Naifu
    Tao, Meixia
    Wang, Jia
    Shao, Shuo
    [J]. IEEE COMMUNICATIONS LETTERS, 2023, 27 (01) : 160 - 164
  • [28] Coded Federated Learning for Communication-Efficient Edge Computing: A Survey
    Zhang, Yiqian
    Gao, Tianli
    Li, Congduan
    Tan, Chee Wei
    [J]. IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 4098 - 4124
  • [29] Digital Over-the-Air Federated Learning in Multi-Antenna Systems
    Wang, Sihua
    Chen, Mingzhe
    Shen, Cong
    Yin, Changchuan
    Brinton, Christopher G.
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (10) : 15125 - 15141
  • [30] Over-the-Air Federated Learning in Digital Twins Empowered UAV Swarms
    Jiang, Bingqing
    Du, Jun
    Jiang, Chunxiao
    Han, Zhu
    Alhammadi, Ahmed
    Debbah, Merouane
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (11) : 17619 - 17634