Experimental and CFD analysis of a floating offshore wind turbine under imposed motions

被引:1
|
作者
Taruffi, Federico [1 ]
Combette, Robin [2 ]
Vire, Axelle [1 ]
机构
[1] Delft Univ Technol, Fac Aerosp Engn, Kluyerweg 1, NL-2629 HS Delft, Netherlands
[2] Ecole Cent Nantes, LHEEA Lab, 1 Rue Noe, F-44321 Nantes 3, France
来源
SCIENCE OF MAKING TORQUE FROM WIND, TORQUE 2024 | 2024年 / 2767卷
关键词
D O I
10.1088/1742-6596/2767/6/062010
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The rotor of a floating offshore wind turbine experiences intricate aerodynamics due to significant motion in the floating foundation, necessitating a holistic understanding through a synergistic blend of experimental and numerical methodologies. This study investigates rotor loads and the emergence of unsteady phenomena for a floating offshore wind turbine under motion. The approach compares a wind tunnel experimental campaign on a moving scale model with large-eddy simulations. Importantly, both experimental and numerical setups were co-designed simultaneously to match conditions and allow a fair comparison. The experimental setup features a 1:148 scale model of the DTU 10MW reference wind turbine on a six degrees of freedom robotic platform, tested in a wind tunnel. Numerically, the LES code YALES2, employing an actuator line approach undergoing imposed motions, is used. Harmonic motions on one degree of freedom in surge and pitch directions are explored at various frequencies. Thrust force variation aligns with quasi-steady theory for both numerical and experimental results at low frequencies. However, higher frequencies reveal the rise of unsteady phenomena in experiments. Large-eddy simulations, coupled with an actuator line approach, provide additional insights into the near- and mid-wake response to imposed motions. This co-design approach between numerical and experimental tests enhances the comprehension of aerodynamic behaviour in floating offshore wind turbines, offering valuable insights for future designs.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Influence of Heave Plate on the Flow-Induced Motions of a Floating Offshore Wind Turbine
    Goncalves, Rodolfo T.
    Malta, Edgard B.
    Simos, Alexandre N.
    Hirabayashi, Shinichiro
    Suzuki, Hideyuki
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2023, 145 (03):
  • [32] Investigation of the effect of prescribed coupled motions on the power production of a floating offshore wind turbine
    Ramponi, R.
    Amaral, R.
    Vire, A.
    EERA DEEPWIND CONFERENCE 2023, 2023, 2626
  • [33] Investigating effects of pitch motions on aerodynamics and wake characteristics of a floating offshore wind turbine
    Wang, Kai
    Zhao, Mengshang
    Tang, Qinghong
    Zha, Ruosi
    ENERGY CONVERSION AND MANAGEMENT, 2025, 326
  • [34] Nonlinear analysis of a floating offshore wind turbine with internal resonances
    Ghozlane, M.
    Najar, F.
    NONLINEAR DYNAMICS, 2024, 112 (03) : 1729 - 1757
  • [35] Dynamic Analysis of Different Configurations of Offshore Floating Wind Turbine
    Daranikota, Akhila
    Karmakar, D.
    ASIAN AND PACIFIC COASTS 2017: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON APAC 2017, 2018, : 837 - 848
  • [36] Dynamic Analysis of an Offshore Wind Turbine Drivetrain on a Floating Support
    Viadero, Fernando
    Fernandez del Rincon, Alfonso
    Liano, Emilio
    Angel Serna, Miguel
    Angel Diaz, Manuel
    CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS, 2012, : 627 - 634
  • [37] Mooring system fatigue analysis of a floating offshore wind turbine
    Barrera, Carlos
    Battistella, Tommaso
    Guanche, Raul
    Losada, Inigo J.
    OCEAN ENGINEERING, 2020, 195
  • [38] Nonlinear analysis of a floating offshore wind turbine with internal resonances
    M. Ghozlane
    F. Najar
    Nonlinear Dynamics, 2024, 112 : 1729 - 1757
  • [39] MODEL SCALE ANALYSIS OF A TLP FLOATING OFFSHORE WIND TURBINE
    Zamora-Rodriguez, Ricardo
    Gomez-Alonso, Pablo
    Amate-Lopez, Juan
    De-Diego-Martin, Victor
    Dinoi, Pasquale
    Simos, Alexandre N.
    Souto-Iglesias, Antonio
    33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 9B: OCEAN RENEWABLE ENERGY, 2014,
  • [40] Analysis of the Induction and Wake Evolution of an Offshore Floating Wind Turbine
    Sebastian, Thomas
    Lackner, Matthew
    ENERGIES, 2012, 5 (04): : 968 - 1000