Explainable Machine Learning for Intrusion Detection

被引:0
|
作者
Bellegdi, Sameh [1 ]
Selamat, Ali [1 ,2 ,3 ,4 ]
Olatunji, Sunday O. [5 ]
Fujita, Hamido [1 ]
Krejcar, Ondfrej [4 ]
机构
[1] Univ Teknol Malaysia UTM, Malaysia Japan Int Inst Technol, Kuala Lumpur 54100, Malaysia
[2] Univ Teknol Malaysia, Univ Teknol Malaysia UTM, Fac Comp, Johor Baharu 81310, Johor, Malaysia
[3] Univ Teknol Malaysia, Media & Games Ctr Excellence MagicX, Johor Baharu 81310, Johor, Malaysia
[4] Univ Hradec Kralove, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
[5] Imam Abdulrahman Bin Faisal Univ, Dammam 31441, Saudi Arabia
来源
ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, IEA-AIE 2024 | 2024年 / 14748卷
关键词
intrusion detection; IDS; machine learning; explainable machine learning; XAI; SHAP; LIME;
D O I
10.1007/978-981-97-4677-4_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Intrusion detection systems (IDS) are essential tools to maintain robust cybersecurity. Machine learning (ML)-based IDS provides promising results. However, such IDS are recognized as black-box and lack trust and transparency. There is a limited number of explainable IDS (X-IDS). Moreover, several X-IDS used outdated datasets. Some papers used deep neural network which is computationally expensive. This paper proposes lightweight tree-based X-IDS using a recent IDS dataset. We explore the effectiveness of explainable artificial intelligence (XAI) techniques in increasing ML-based IDS transparency. Four ML algorithms are employed; viz. LightGBM, random forests, AdaBoost, and XGBoost; to classify a given network flow as benign or malicious. Network flows extracted from the CSE-CIC-IDS2018 dataset are used to evaluate the IDS models. The best F1-score results of 0.979 and 0.978 are achieved with LightGBM and XGBoost, respectively. We use SHapley Additive exPlanations (SHAP) and Local Model-Agnostic Explanations (LIME) techniques to provide global and local explanations for predictions made by the LightGBM. The obtained explanations in the form of graphs provide measurable insights for cybersecurity experts regarding the most important features that impact the detection of intrusions.
引用
收藏
页码:122 / 134
页数:13
相关论文
empty
未找到相关数据