Seed priming - induced drought tolerance in Castor: Unravelling the physiological and molecular mechanisms

被引:0
|
作者
Elangovan, Kanimozhi [1 ]
Vijayan, R. [2 ]
Manonmani, V. [1 ]
Eevera, T. [1 ]
Venkatachalam, S. R. [3 ]
Tilak, M. [4 ]
机构
[1] Dept Seed Sci & Technol, Coimbatore 641003, Tamil Nadu, India
[2] Forest Coll & Res Inst, Dept Forest Biol & Tree Improvement, Mettupalayam 641301, Tamil Nadu, India
[3] Tapioca & Castor Res Stn, Salem 641003, Tamil Nadu, India
[4] Forest Coll & Res Inst, Dept Agroforestry, Coimbatore 641301, Tamil Nadu, India
来源
PLANT SCIENCE TODAY | 2024年 / 11卷
关键词
castor; rainfed; water stress; seed priming; RcECP63; SALICYLIC-ACID; EXOGENOUS APPLICATION; HYDROGEN-PEROXIDE; STRESS TOLERANCE; GROWTH; L; PARAMETERS; PLANTS; ROOTS;
D O I
10.14719/pst.5032
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Castor is an essential nonedible oilseed crop with significant applications in the cosmetic and chemical industries. It is cultivated primarily in rainfed regions, where drought is a common abiotic stress factor. Seed germination, the critical initial stage, is particularly affected by drought. Seed priming with radical scavenging chemicals such as salicylic acid, melatonin, hydrogen peroxide and ascorbic acid has been explored to increase germination under water deficit conditions. This study aimed to evaluate the effects of different concentrations of these chemicals on the physiological and antioxidant enzyme activities of castor under drought stress. Two water regimes were applied in the study. Among the treatments, seed priming with 80 ppm salicylic acid significantly improved key parameters, including the germination % (71 %), speed of germination (4.1 %), vigour index (3141), chlorophyll content (28.3 SPAD units) and relative water content (63 %). It also increased the antioxidant enzyme activities such as CAT, POD, SOD and APX, along with the overexpression of the drought-responsive gene RCECP63 under water deficit conditions. These findings highlight that seed priming, particularly with salicylic acid, offers a promising strategy to enhance castor resilience under prolonged drought stress, providing a practical approach for improving crop performance in drought-prone regions.
引用
收藏
页码:14 / 14
页数:1
相关论文
共 50 条
  • [1] Terminal drought and seed priming improves drought tolerance in wheat
    Tabassum, Tahira
    Farooq, Muhammad
    Ahmad, Riaz
    Zohaib, Ali
    Wahid, Abdul
    Shahid, Muhammad
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2018, 24 (05) : 845 - 856
  • [2] Seed Priming: Molecular and Physiological Mechanisms Underlying Biotic and Abiotic Stress Tolerance
    Jatana, Bhupinder Singh
    Grover, Sajjan
    Ram, Hari
    Baath, Gurjinder Singh
    AGRONOMY-BASEL, 2024, 14 (12):
  • [3] Physiological, Biochemical and Molecular Mechanisms of Seed Priming: A Review
    Diya, A.
    Beena, R.
    Jayalekshmy, V. G.
    LEGUME RESEARCH, 2024, 47 (02) : 159 - 166
  • [4] Morphological, physiological and biochemical aspects of zinc seed priming-induced drought tolerance in faba bean
    Farooq, Muhammad
    Almamari, Sara Ali Darwish
    Rehman, Abdul
    Al-Busaidi, Walid Mubarak
    Wahid, Abdul
    Al-Ghamdi, Salem S.
    SCIENTIA HORTICULTURAE, 2021, 281
  • [5] Physiological and Biochemical Mechanisms of Seed Priming-Induced Chilling Tolerance in Rice Cultivars
    Hussain, Saddam
    Khan, Fahad
    Hussain, Hafiz A.
    Nie, Lixiao
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [6] Seed Priming: A Feasible Strategy to Enhance Drought Tolerance in Crop Plants
    Marthandan, Vishvanathan
    Geetha, Rathnavel
    Kumutha, Karunanandham
    Renganathan, Vellaichamy Gandhimeyyan
    Karthikeyan, Adhimoolam
    Ramalingam, Jegadeesan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (21) : 1 - 23
  • [7] Dynamic transcriptomic analysis uncovers key genes and mechanisms involved in seed priming-induced tolerance to drought in barley
    Sazegari, Sima
    Zinati, Zahra
    Tahmasebi, Ahmad
    GENE REPORTS, 2020, 21
  • [8] Stress memory responses and seed priming correlate with drought tolerance in plants: an overview
    Liu, Xun
    Quan, Wenli
    Bartels, Dorothea
    PLANTA, 2022, 255 (02)
  • [9] Terminal drought and seed priming improves drought tolerance in wheat
    Tahira Tabassum
    Muhammad Farooq
    Riaz Ahmad
    Ali Zohaib
    Abdul Wahid
    Muhammad Shahid
    Physiology and Molecular Biology of Plants, 2018, 24 : 845 - 856
  • [10] Plant drought stress tolerance: understanding its physiological, biochemical and molecular mechanisms
    Bashir, Sheikh Shanawaz
    Hussain, Anjuman
    Hussain, Sofi Javed
    Wani, Owais Ali
    Nabi, Sheikh Zahid
    Dar, Niyaz A.
    Baloch, Faheem Shehzad
    Mansoor, Sheikh
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2021, 35 (01) : 1912 - 1925