Pentavalent 2-regular core-free Cayley graphs

被引:0
作者
Ling, Bo [1 ]
Long, Zhi Ming [1 ]
机构
[1] Yunnan Minzu Univ, Sch Math & Comp Sci, Kunming, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Cayley graph; Core-free; 2-regular; Automorphism group; PERMUTATION-GROUPS;
D O I
10.1016/j.disc.2025.114479
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Cayley graph F = Cay(G, S) is said to be 2-regular core-free if G is core-free in some X <= Aut F and Aut F acts regularly on the set of 2-arcs of F. In this paper, we classify the pentavalent 2-regular core-free Cayley graphs. As a byproduct, we provide another proof of one of the results by Du et al. (2017) [6] regarding pentavalent symmetric graphs over nonabelian simple groups. Namely, we prove that the pentavalent 2-regular Cayley graphs over non-abelian simple groups are normal. Furthermore, we construct a pentavalent core-free 2-transitive Cayley graph Cay(G, S) such that Aut(G, S) is transitive but not 2-transitive on S. This answers a question posed by Li in 2008. (c) 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:13
相关论文
共 27 条
[1]  
Biggs N, 1992, Algebraic Graph Theory
[2]   On symmetries of Cayley graphs and the graphs underlying regular maps [J].
Conder, Marston .
JOURNAL OF ALGEBRA, 2009, 321 (11) :3112-3127
[3]  
Du J.L., 2017, Commun. Algebra
[4]   Cubic core-free symmetric m-Cayley graphs [J].
Du, Jia-Li ;
Conder, Marston ;
Feng, Yan-Quan .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2019, 50 (02) :143-163
[5]   Pentavalent symmetric graphs admitting vertex-transitive non-abelian simple groups [J].
Du, Jia-Li ;
Feng, Yan-Quan ;
Zhou, Jin-Xin .
EUROPEAN JOURNAL OF COMBINATORICS, 2017, 63 :134-145
[6]   On edge-transitive Cayley graphs of valency four [J].
Fang, XG ;
Li, CH ;
Xu, MY .
EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (07) :1107-1116
[7]   CLASSIFICATION OF TETRAVALENT 2-TRANSITIVE NONNORMAL CAYLEY GRAPHS OF FINITE SIMPLE GROUPS [J].
Fang, Xin Gui ;
Wang, Jie ;
Zhou, Sanming .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 104 (02) :263-271
[8]   On locally primitive Cayley graphs of finite simple groups [J].
Fang, Xingui ;
Ma, Xuesong ;
Wang, Jie .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (03) :1039-1051
[9]  
Gorenstein D., 1982, Finite Simple Groups: An Introduction to Their Classifications
[10]   A note on pentavalent s-transitive graphs [J].
Guo, Song-Tao ;
Feng, Yan-Quan .
DISCRETE MATHEMATICS, 2012, 312 (15) :2214-2216