Improving Intrusion Detection Using PCA And K-Means Clustering Algorithm

被引:2
|
作者
Khaoula, Radi [1 ]
Mohamed, Moughit [1 ]
机构
[1] Sultan Moulay Slimane Univ, LaSTI Lab, Natl Sch Appl Sci, Khouribga, Morocco
关键词
Intrusion Detection System; K-means; WEKA; Machine Learning; PCA; NSL-KDD dataset;
D O I
10.1109/WINCOM55661.2022.9966426
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the last few years, the internet has been growing at an exponential rate, which has generated a severe increase in network attacks. So, to provide necessary security, an intrusion detection system (IDS) is used to detect malicious traffic and prevent attacks from various data sources. For this aim, clustering is the simple and reliable method in machine learning to detect intrusions in the case of unlabeled data, in addition to detecting unknown and new types of intrusions. In this paper, we are analyzing the NSL-KDD dataset, which is an improved version of its predecessor, the KDD-99 dataset, using the K-Means clustering algorithm. We compare the results by first using correlation as a feature selection method to eliminate redundant and irrelevant attributes in our data set, and then by increasing interpretability while minimizing information loss using the dimensionality reduction method of Principal Component Analysis (PCA). The analysis was done using Python and the data mining tool WEKA. Results are shown to have an improved accuracy after using PCA over K-means clustering. Our main objective is to provide a better model of IDS using machine learning, especially clustering methods.
引用
收藏
页码:19 / 23
页数:5
相关论文
共 50 条
  • [41] K-means Clustering: An Efficient Algorithm for Protein Complex Detection
    Kalaivani, S.
    Ramyachitra, D.
    Manikandan, P.
    PROGRESS IN COMPUTING, ANALYTICS AND NETWORKING, ICCAN 2017, 2018, 710 : 449 - 459
  • [42] An Improved K-means Clustering Algorithm
    Wang Yintong
    Li Wanlong
    Gao Rujia
    2012 WORLD AUTOMATION CONGRESS (WAC), 2012,
  • [43] Unsupervised K-Means Clustering Algorithm
    Sinaga, Kristina P.
    Yang, Miin-Shen
    IEEE ACCESS, 2020, 8 : 80716 - 80727
  • [44] Granular K-means Clustering Algorithm
    Zhou, Chenglong
    Chen, Yuming
    Zhu, Yidong
    Computer Engineering and Applications, 2023, 59 (13) : 317 - 324
  • [45] Modified k-Means Clustering Algorithm
    Patel, Vaishali R.
    Mehta, Rupa G.
    COMPUTATIONAL INTELLIGENCE AND INFORMATION TECHNOLOGY, 2011, 250 : 307 - +
  • [46] Intrusion detection based on MLP neural networks and K-means algorithm
    Zheng, HY
    Ni, L
    Xiao, D
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 3, PROCEEDINGS, 2005, 3498 : 434 - 438
  • [47] Modified K-means clustering algorithm
    Li, Wei
    CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 4, PROCEEDINGS, 2008, : 618 - 621
  • [48] The MinMax k-Means clustering algorithm
    Tzortzis, Grigorios
    Likas, Aristidis
    PATTERN RECOGNITION, 2014, 47 (07) : 2505 - 2516
  • [49] The global k-means clustering algorithm
    Likas, A
    Vlassis, N
    Verbeek, JJ
    PATTERN RECOGNITION, 2003, 36 (02) : 451 - 461
  • [50] Improved K-means clustering algorithm
    Zhang, Zhe
    Zhang, Junxi
    Xue, Huifeng
    CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 5, PROCEEDINGS, 2008, : 169 - 172