A Phenazine-Based Two-Dimensional Covalent Organic Framework for Photochemical CO2 Reduction with Increased Selectivity for Two-Carbon Products

被引:1
作者
Hirani, Zoheb [1 ]
Schweitzer, Neil M. [2 ]
Vitaku, Edon [1 ]
Dichtel, William R. [1 ]
机构
[1] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Chem & Biol Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
Carbon dioxide; Covalent organic frameworks; Organic semiconductors; Photocatalysis; 2D polymers; CARBON-DIOXIDE; COBALT-CYCLAM; METAL; PHOTOREDUCTION; EFFICIENT; ELECTRON; ANOLYTE; ENERGY; SITES;
D O I
10.1002/anie.202502799
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The reduction of carbon dioxide (CO2) into valuable products will contribute to sustainable carbon use. Here we report the photocatalytic reduction of CO2 to carbon monoxide, formate, and oxalate ions using a redox-active phenazine-based 2D covalent organic framework (Phen-COF) and its phenazine monomer. Under similar irradiation conditions, Phen-COF produced 2.9 times more CO, 11 times more formate, and 13 times more oxalate compared to equimolar amounts of the monomeric phenazine, demonstrating that the COF architecture enhances catalytic performance (TOFCOF: 10-7 s-1 CO, 10-8 s-1 formate, and 10-11 s-1 oxalate). Structural analysis, including X-ray diffraction and N-2 porosimetry, confirmed the COF's long-range order and porosity. Mechanistic studies suggest a sequential formate-to-oxalate pathway, with CO and formate acting as intermediates. These results demonstrate the potential of the COF architecture to improve the performance of metal-free, redox-active aromatic systems such as phenazines to facilitate efficient and selective CO2 conversion under mild conditions.
引用
收藏
页数:8
相关论文
共 71 条
  • [1] Albero J., Peng Y., Garcia H., ACS Catal., 10, pp. 5734-5749, (2020)
  • [2] Wu J., Huang Y., Ye W., Li Y., Adv. Sci., 4, (2017)
  • [3] Liao L., Xie G., Xie X., Zhang N., J. Phys. Chem. C, 127, pp. 2766-2781, (2023)
  • [4] Nam D.-H., de Luna P., Rosas-Hernandez A., Thevenon A., Li F., Agapie T., Peters J.C., Shekhah O., Eddaoudi M., Sargent E.H., Nat. Mater., 19, pp. 266-276, (2020)
  • [5] Zhang S., Fan Q., Xia R., Meyer T.J., Acc. Chem. Res., 53, pp. 255-264, (2020)
  • [6] Woldu A.R., Huang Z., Zhao P., Hu L., Astruc D., Coord. Chem. Rev., 454, (2022)
  • [7] Wang W., Wang L., Su W., Xing Y., J. CO2 Util., 61, (2022)
  • [8] Nitopi S., Bertheussen E., Scott S.B., Liu X., Engstfeld A.K., Horch S., Seger B., Stephens I.E.L., Chan K., Hahn C., Norskov J.K., Jaramillo T.F., Chorkendorff I., Chem. Rev., 119, pp. 7610-7672, (2019)
  • [9] Sun D., Xu X., Qin Y., Jiang S.P., Shao Z., ChemSusChem, 13, pp. 39-58, (2020)
  • [10] Ijaz M., Zafar M., Int. J. Energy Res., 45, pp. 3569-3589, (2021)