The exchange dynamics of biomolecular condensates

被引:2
|
作者
Zhang, Yaojun [1 ,2 ,3 ]
Pyo, Andrew G. T. [4 ]
Kliegman, Ross [2 ]
Jiang, Yoyo [2 ]
Brangwynne, Clifford P. [5 ,6 ]
Stone, Howard A. [7 ]
Wingreen, Ned S. [8 ,9 ]
机构
[1] Princeton Univ, Ctr Phys Biol Funct, Princeton, NJ 08544 USA
[2] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Dept Biophys, Baltimore, MD 21218 USA
[4] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[5] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ USA
[6] Howard Hughes Med Inst, Chevy Chase, MD USA
[7] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ USA
[8] Princeton Univ, Dept Mol Biol, Princeton, NJ 21218 USA
[9] Lewis Sigler Inst Integrat Genom, Princeton, NJ 08540 USA
来源
ELIFE | 2024年 / 12卷
基金
美国国家科学基金会;
关键词
biomolecular condensates; exchange dynamics; interface resistance; GRANULES;
D O I
10.7554/eLife.91680
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A hallmark of biomolecular condensates formed via liquid-liquid phase separation is that they dynamically exchange material with their surroundings, and this process can be crucial to condensate function. Intuitively, the rate of exchange can be limited by the flux from the dilute phase or by the mixing speed in the dense phase. Surprisingly, a recent experiment suggests that exchange can also be limited by the dynamics at the droplet interface, implying the existence of an 'interface resistance'. Here, we first derive an analytical expression for the timescale of condensate material exchange, which clearly conveys the physical factors controlling exchange dynamics. We then utilize sticker-spacer polymer models to show that interface resistance can arise when incident molecules transiently touch the interface without entering the dense phase, i.e., the molecules 'bounce' from the interface. Our work provides insight into condensate exchange dynamics, with implications for both natural and synthetic systems.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Multivalent interactions with RNA drive recruitment and dynamics in biomolecular condensates in Xenopus oocytes
    Cabral, Sarah E.
    Otis, Jessica P.
    Mowry, Kimberly L.
    ISCIENCE, 2022, 25 (08)
  • [42] Biomolecular Condensates and Genome Network in Cancer
    Suzuki, Hiroshi I.
    CANCER SCIENCE, 2022, 113
  • [43] The role of biomolecular condensates in protein aggregation
    Visser, Brent S.
    Lipinski, Wojciech P.
    Spruijt, Evan
    NATURE REVIEWS CHEMISTRY, 2024, 8 (09) : 686 - 700
  • [44] Unlocking the electrochemical functions of biomolecular condensates
    Dai, Yifan
    Wang, Zhen-Gang
    Zare, Richard N.
    NATURE CHEMICAL BIOLOGY, 2024, 20 (11) : 1420 - 1433
  • [45] Distinct chemical environments in biomolecular condensates
    Kilgore, Henry R.
    Mikhael, Peter G.
    Overholt, Kalon J.
    Boija, Ann
    Hannett, Nancy M.
    Van Dongen, Catherine
    Lee, Tong Ihn
    Chang, Young-Tae
    Barzilay, Regina
    Young, Richard A.
    NATURE CHEMICAL BIOLOGY, 2024, 20 (03) : 291 - 301
  • [46] Influence of cellular crowding on biomolecular condensates
    Pyo, Andrew G. T.
    Wingreen, Ned S.
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 492A - 492A
  • [47] Biomolecular condensates in kidney physiology and disease
    Guoming Gao
    Emily S. Sumrall
    Sethuramasundaram Pitchiaya
    Markus Bitzer
    Simon Alberti
    Nils G. Walter
    Nature Reviews Nephrology, 2023, 19 : 756 - 770
  • [48] Biomolecular Condensates and Their Links to Cancer Progression
    Cai, Danfeng
    Liu, Zhe
    Lippincott-Schwartz, Jennifer
    TRENDS IN BIOCHEMICAL SCIENCES, 2021, 46 (07) : 535 - 549
  • [49] Biomolecular Condensates in Cancer and Drug Discovery
    Klein, Isaac A.
    CANCER SCIENCE, 2023, 114 : 719 - 719
  • [50] Biomolecular condensates modulate membrane remodeling
    Meese, Emma K.
    Strader, Lucia C.
    MOLECULAR PLANT, 2025, 18 (01) : 17 - 18