The exchange dynamics of biomolecular condensates

被引:3
作者
Zhang, Yaojun [1 ,2 ,3 ]
Pyo, Andrew G. T. [4 ]
Kliegman, Ross [2 ]
Jiang, Yoyo [2 ]
Brangwynne, Clifford P. [5 ,6 ]
Stone, Howard A. [7 ]
Wingreen, Ned S. [8 ,9 ]
机构
[1] Princeton Univ, Ctr Phys Biol Funct, Princeton, NJ 08544 USA
[2] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Dept Biophys, Baltimore, MD 21218 USA
[4] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[5] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ USA
[6] Howard Hughes Med Inst, Chevy Chase, MD USA
[7] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ USA
[8] Princeton Univ, Dept Mol Biol, Princeton, NJ 21218 USA
[9] Lewis Sigler Inst Integrat Genom, Princeton, NJ 08540 USA
来源
ELIFE | 2024年 / 12卷
基金
美国国家科学基金会;
关键词
biomolecular condensates; exchange dynamics; interface resistance; GRANULES;
D O I
10.7554/eLife.91680
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A hallmark of biomolecular condensates formed via liquid-liquid phase separation is that they dynamically exchange material with their surroundings, and this process can be crucial to condensate function. Intuitively, the rate of exchange can be limited by the flux from the dilute phase or by the mixing speed in the dense phase. Surprisingly, a recent experiment suggests that exchange can also be limited by the dynamics at the droplet interface, implying the existence of an 'interface resistance'. Here, we first derive an analytical expression for the timescale of condensate material exchange, which clearly conveys the physical factors controlling exchange dynamics. We then utilize sticker-spacer polymer models to show that interface resistance can arise when incident molecules transiently touch the interface without entering the dense phase, i.e., the molecules 'bounce' from the interface. Our work provides insight into condensate exchange dynamics, with implications for both natural and synthetic systems.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Biological Phase Separation and Biomolecular Condensates in Plants
    Emenecker, Ryan J.
    Holehouse, Alex S.
    Strader, Lucia C.
    ANNUAL REVIEW OF PLANT BIOLOGY, VOL 72, 2021, 2021, 72 : 17 - 46
  • [2] Biomolecular Condensates in Contact with Membranes
    Mangiarotti, Agustin
    Dimova, Rumiana
    ANNUAL REVIEW OF BIOPHYSICS, 2024, 53 : 319 - 341
  • [3] Biomolecular condensates in neurodegeneration and cancer
    Spannl, Stephanie
    Tereshchenko, Maria
    Mastromarco, Giovanni J.
    Ihn, Sean J.
    Lee, Hyun O.
    TRAFFIC, 2019, 20 (12) : 890 - 911
  • [4] Molecular structure in biomolecular condensates
    Peran, Ivan
    Mittag, Tanja
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2020, 60 : 17 - 26
  • [5] Biomolecular condensates in cancer biology
    Suzuki, Hiroshi, I
    Onimaru, Koh
    CANCER SCIENCE, 2022, 113 (02) : 382 - 391
  • [6] Stress sensing and response through biomolecular condensates in plants
    Peng, Jiaxuan
    Yu, Yidan
    Fang, Xiaofeng
    PLANT COMMUNICATIONS, 2025, 6 (02)
  • [7] Proximity to criticality predicts surface properties of biomolecular condensates
    Pyo, Andrew G. T.
    Zhang, Yaoju
    Wingreen, Ned S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (23)
  • [8] Multivalent interactions with RNA drive recruitment and dynamics in biomolecular condensates in Xenopus oocytes
    Cabral, Sarah E.
    Otis, Jessica P.
    Mowry, Kimberly L.
    ISCIENCE, 2022, 25 (08)
  • [9] Liquid-liquid phase separation and biomolecular condensates
    Wu, Rongbo
    Li, Pilong
    CHINESE SCIENCE BULLETIN-CHINESE, 2019, 64 (22): : 2285 - 2291
  • [10] Repurposing Peptide Nanomaterials as Synthetic Biomolecular Condensates in Bacteria
    Tomares, Dylan T.
    Whitlock, Sara
    Mann, Matthew
    DiBernardo, Emma
    Childers, W. Seth
    ACS SYNTHETIC BIOLOGY, 2022, 11 (06): : 2154 - 2162