The exchange dynamics of biomolecular condensates

被引:2
|
作者
Zhang, Yaojun [1 ,2 ,3 ]
Pyo, Andrew G. T. [4 ]
Kliegman, Ross [2 ]
Jiang, Yoyo [2 ]
Brangwynne, Clifford P. [5 ,6 ]
Stone, Howard A. [7 ]
Wingreen, Ned S. [8 ,9 ]
机构
[1] Princeton Univ, Ctr Phys Biol Funct, Princeton, NJ 08544 USA
[2] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Dept Biophys, Baltimore, MD 21218 USA
[4] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[5] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ USA
[6] Howard Hughes Med Inst, Chevy Chase, MD USA
[7] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ USA
[8] Princeton Univ, Dept Mol Biol, Princeton, NJ 21218 USA
[9] Lewis Sigler Inst Integrat Genom, Princeton, NJ 08540 USA
来源
ELIFE | 2024年 / 12卷
基金
美国国家科学基金会;
关键词
biomolecular condensates; exchange dynamics; interface resistance; GRANULES;
D O I
10.7554/eLife.91680
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A hallmark of biomolecular condensates formed via liquid-liquid phase separation is that they dynamically exchange material with their surroundings, and this process can be crucial to condensate function. Intuitively, the rate of exchange can be limited by the flux from the dilute phase or by the mixing speed in the dense phase. Surprisingly, a recent experiment suggests that exchange can also be limited by the dynamics at the droplet interface, implying the existence of an 'interface resistance'. Here, we first derive an analytical expression for the timescale of condensate material exchange, which clearly conveys the physical factors controlling exchange dynamics. We then utilize sticker-spacer polymer models to show that interface resistance can arise when incident molecules transiently touch the interface without entering the dense phase, i.e., the molecules 'bounce' from the interface. Our work provides insight into condensate exchange dynamics, with implications for both natural and synthetic systems.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Interfacial exchange dynamics of biomolecular condensates are highly sensitive to client interactions
    Rana, Ushnish
    Wingreen, Ned S.
    Brangwynne, Clifford P.
    Panagiotopoulos, Athanassios Z.
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (14):
  • [2] Colocalization and dynamics of reflectin biomolecular condensates
    Watanabe, Rika
    Walsh, Susan
    Levenson, Robert
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2024, 300 (03) : S646 - S646
  • [3] Tunable properties and dynamics of biomolecular condensates
    Elbaum, Shana
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2023, 299 (03) : S521 - S521
  • [4] Shear relaxation governs fusion dynamics of biomolecular condensates
    Ghosh, Archishman
    Kota, Divya
    Zhou, Huan-Xiang
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [5] Shear relaxation governs fusion dynamics of biomolecular condensates
    Archishman Ghosh
    Divya Kota
    Huan-Xiang Zhou
    Nature Communications, 12
  • [6] Focus on biomolecular condensates
    Gutierrez-Beltran, Emilio
    Strader, Lucia
    Bozhkov, Peter, V
    PLANT CELL, 2023, 35 (09): : 3155 - 3157
  • [7] Biomolecular Condensates and Cancer
    Boija, Ann
    Klein, Isaac A.
    Young, Richard A.
    CANCER CELL, 2021, 39 (02) : 174 - 192
  • [8] Biomolecular Condensates in the Nucleus
    Sabari, Benjamin R.
    Dall'Agnese, Alessandra
    Young, Richard A.
    TRENDS IN BIOCHEMICAL SCIENCES, 2020, 45 (11) : 961 - 977
  • [9] Artificial biomolecular condensates
    Lei Tang
    Nature Methods, 2019, 16 : 23 - 23
  • [10] Biophysics of biomolecular condensates
    Joshi, Ashish
    Mukhopadhyay, Samrat
    BIOPHYSICAL JOURNAL, 2023, 122 (05) : 737 - 740