Commuting involutions in finite simple groups

被引:0
|
作者
Guralnick, Robert [1 ]
Robinson, Geoffrey R. [2 ]
机构
[1] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Kings Coll, Dept Math, Aberdeen AB24 3FX, Scotland
关键词
Finite simple groups; Commuting involutions; Brauer-Fowler;
D O I
10.1007/s40879-024-00793-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if G is a finite simple group and x,y is an element of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x, y \in G$$\end{document} are involutions, then |xG boolean AND CG(y)|->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|x<^>G \,{\cap }\, C_G(y)| \rightarrow \infty $$\end{document} as |G|->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|G| \rightarrow \infty $$\end{document}. This extends results of Guralnick-Robinson and Skresanov. We also prove a related result about CG(t)/O(CG(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{G}(t)/O(C_G(t))$$\end{document} that does not require the classification of finite simple groups.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] On semi-rational finite simple groups
    Alavi, Seyed Hassan
    Daneshkhah, Ashraf
    MONATSHEFTE FUR MATHEMATIK, 2017, 184 (02): : 175 - 184
  • [22] SIMPLICITY OF FUSION SYSTEMS OF FINITE SIMPLE GROUPS
    Oliver, Bob
    Ruiz, Albert
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (11) : 7743 - 7777
  • [23] Expansion in finite simple groups of Lie type
    Breuillard, Emmanuel
    Green, Ben
    Guralnick, Robert
    Tao, Terence
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (06) : 1367 - 1434
  • [24] The probabilistic zeta function of finite simple groups
    Damian, Erika
    Lucchini, Andrea
    JOURNAL OF ALGEBRA, 2007, 313 (02) : 957 - 971
  • [25] A new characterization of some finite simple groups
    M. F. Ghasemabadi
    A. Iranmanesh
    F. Mavadatpour
    Siberian Mathematical Journal, 2015, 56 : 78 - 82
  • [27] A characterization of finite simple groups by the orders of solvable subgroups
    Denecke, Klaus
    Li, Xian-hua
    Bi, Jian-xing
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (05): : 715 - 726
  • [28] Products of conjugacy classes in finite and algebraic simple groups
    Guralnick, Robert M.
    Malle, Gunter
    Pham Huu Tiep
    ADVANCES IN MATHEMATICS, 2013, 234 : 618 - 652
  • [29] A new characterization of some families of finite simple groups
    Ghasemabadi, M. Foroudi
    Iranmanesh, A.
    Ahanjideh, M.
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2017, 137 : 57 - 74
  • [30] Presentations of finite simple groups: profinite and cohomological approaches
    Guralnick, Robert
    Kantor, William M.
    Kassabov, Martin
    Lubotzky, Alexander
    GROUPS GEOMETRY AND DYNAMICS, 2007, 1 (04) : 469 - 523