Commuting involutions in finite simple groups

被引:0
|
作者
Guralnick, Robert [1 ]
Robinson, Geoffrey R. [2 ]
机构
[1] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Kings Coll, Dept Math, Aberdeen AB24 3FX, Scotland
关键词
Finite simple groups; Commuting involutions; Brauer-Fowler;
D O I
10.1007/s40879-024-00793-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if G is a finite simple group and x,y is an element of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x, y \in G$$\end{document} are involutions, then |xG boolean AND CG(y)|->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|x<^>G \,{\cap }\, C_G(y)| \rightarrow \infty $$\end{document} as |G|->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|G| \rightarrow \infty $$\end{document}. This extends results of Guralnick-Robinson and Skresanov. We also prove a related result about CG(t)/O(CG(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{G}(t)/O(C_G(t))$$\end{document} that does not require the classification of finite simple groups.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Commuting involutions in finite simple groupsCommuting involutions in finite simple groupsR. Guralnick, G.R. Robinson
    Robert Guralnick
    Geoffrey R. Robinson
    European Journal of Mathematics, 2025, 11 (1)
  • [2] Commuting involutions and elementary abelian subgroups of simple groups
    Guralnick, Robert M.
    Robinson, Geoffrey R.
    JOURNAL OF ALGEBRA, 2022, 607 : 300 - 314
  • [3] Involutions in finite simple groups as products of conjugates
    Dona, Daniele
    Liebeck, Martin W.
    Rekvenyi, Amilla
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (09) : 3750 - 3761
  • [4] Algebraic families of groups and commuting involutions
    Barbasch, Dan
    Higson, Nigel
    Subag, Eyal
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (04)
  • [5] An infinitude of counterexamples to Herzog's conjecture on involutions in simple groups
    Anabanti, Chimere Stanley
    Hammer, Stefan
    Okoli, Nneka Chigozie
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (04) : 1415 - 1421
  • [6] Non-simple localizations of finite simple groups
    Rodriguez, Jose L.
    Scherer, Jerome
    Viruel, Antonio
    JOURNAL OF ALGEBRA, 2006, 305 (02) : 765 - 774
  • [7] Word maps in finite simple groups
    Cocke, William
    Ho, Meng-Che
    ARCHIV DER MATHEMATIK, 2019, 113 (06) : 565 - 570
  • [8] Word maps in finite simple groups
    William Cocke
    Meng-Che Ho
    Archiv der Mathematik, 2019, 113 : 565 - 570
  • [9] The diameter of products of finite simple groups
    Dona, Daniele
    ARS MATHEMATICA CONTEMPORANEA, 2022, 22 (04)
  • [10] The involution width of finite simple groups
    Malcolm, Alexander J.
    JOURNAL OF ALGEBRA, 2018, 493 : 297 - 340