Inverse-Free Hybrid Spatial-Temporal Derivative Neural Network for Time-Varying Matrix Moore-Penrose Inverse and Its Circuit Schematic

被引:1
作者
Zhang, Bing [1 ,2 ,3 ]
Zheng, Yuhua [4 ]
Li, Shuai [5 ,6 ]
Chen, Xinglong [1 ,2 ,3 ]
Mao, Yao [1 ,2 ,3 ]
Pham, Duc Truong [7 ]
机构
[1] Chinese Acad Sci, Key Lab Opt Engn, Natl KeyLaboratory Opt Field Manipulat Sci & Techn, Chengdu 610209, Peoples R China
[2] Chinese Acad Sci, Inst Opt & Elect, Chengdu 610209, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Hangzhou 310024, Peoples R China
[5] Univ Oulu, Fac Informat Technol & Elect Engn, Oulu 90570, Finland
[6] VTT Tech Res Ctr Finland, Oulu 90590, Finland
[7] Univ Birmingham, Dept Mech Engn, Birmingham B15 2TT, England
基金
中国国家自然科学基金;
关键词
Computational modeling; Convergence; Mathematical models; Numerical models; Analog circuits; Steady-state; Analytical models; Adaptation models; Symmetric matrices; Robustness; Zeroing neural network; time-varying matrix Moore-Penrose inverse; manipulator; circuit schematic; MODELS;
D O I
10.1109/TCSII.2025.3530639
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief introduces the Inverse-free hybrid spatial-temporal derivative neural network (IHSTDNN), a novel neural network that integrates principles from gradient neural networks (GNN) and zeroing neural networks (ZNN) to address the time-varying matrix Moore-Penrose inverse. The IHSTDNN features an explicit dynamic structure, eliminating the need for inverse operations. The design of its circuit is outlined, and the model's convergence and robustness are examined theoretically. Numerical simulations and experimental data demonstrate that the IHSTDNN outperforms other existing models, achieving a faster convergence rate and reduced steady-state error.
引用
收藏
页码:499 / 503
页数:5
相关论文
共 22 条
[1]   Design and Analysis of a Hybrid GNN-ZNN Model With a Fuzzy Adaptive Factor for Matrix Inversion [J].
Dai, Jianhua ;
Chen, Yuanmeng ;
Xiao, Lin ;
Jia, Lei ;
He, Yongjun .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (04) :2434-2442
[2]   RNN Models for Dynamic Matrix Inversion: A Control-Theoretical Perspective [J].
Jin, Long ;
Li, Shuai ;
Hu, Bin .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (01) :189-199
[3]   Zeroing neural networks: A survey [J].
Jin, Long ;
Li, Shuai ;
Liao, Bolin ;
Zhang, Zhijun .
NEUROCOMPUTING, 2017, 267 :597-604
[4]   A Strictly Predefined-Time Convergent and Noise-Tolerant Neural Model for Solving Linear Equations With Robotic Applications [J].
Li, Weibing ;
Guo, Cheng ;
Ma, Xin ;
Pan, Yongping .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (01) :798-809
[5]   Modified gradient neural networks for solving the time-varying Sylvester equation with adaptive coefficients and elimination of matrix inversion [J].
Liao, Shan ;
Liu, Jiayong ;
Xiao, Xiuchun ;
Fu, Dongyang ;
Wang, Guancheng ;
Jin, Long .
NEUROCOMPUTING, 2020, 379 :1-11
[6]   Improved Gradient Neural Networks for Solving Moore-Penrose Inverse of Full-Rank Matrix [J].
Lv, Xuanjiao ;
Xiao, Lin ;
Tan, Zhiguo ;
Yang, Zhi ;
Yuan, Junying .
NEURAL PROCESSING LETTERS, 2019, 50 (02) :1993-2005
[7]   A new one-layer recurrent neural network for nonsmooth pseudoconvex optimization [J].
Qin, Sitian ;
Bian, Wei ;
Xue, Xiaoping .
NEUROCOMPUTING, 2013, 120 :655-662
[8]   Approaches of approximating matrix inversion for zero-forcing pre-coding in downlink massive MIMO systems [J].
Shao, Lin ;
Zu, Yunxiao .
WIRELESS NETWORKS, 2018, 24 (07) :2699-2704
[9]   A novel hybrid Zhang neural network model for time-varying matrix inversion [J].
Sowmya, G. ;
Thangavel, P. ;
Shankar, V. .
ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2022, 26
[10]   Hybrid GNN-ZNN models for solving linear matrix equations [J].
Stanimirovic, Predrag S. ;
Katsikis, Vasilios N. ;
Li, Shuai .
NEUROCOMPUTING, 2018, 316 :124-134