OPTIMAL CONTROL OF MCKEAN-VLASOV EQUATIONS WITH CONTROLLED STOCHASTICITY

被引:0
作者
DI Persio, Luca [1 ]
Kuchling, Peter [2 ]
机构
[1] Univ Verona, Coll Math, Dept Comp Sci, Verona, Italy
[2] Bielefeld Univ Appl Sci & Arts, Fac Engn & Math, Bielefeld, Germany
关键词
Optimal control; McKean-Vlasov equation; Nemytskii-type equation; Fokker-Planck equation; Kolmogorov equation; FOKKER-PLANCK EQUATIONS; DIFFERENTIAL-EQUATIONS;
D O I
10.3934/eect.2024058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we analyse the existence of an optimal feedback controller of stochastic optimal control problems governed by SDEs which have the control in the diffusion part. To this end, we consider the underlying Fokker-Planck equation to transform the stochastic optimal control problem into a deterministic problem with open-loop controller.
引用
收藏
页码:367 / 387
页数:21
相关论文
共 32 条
[1]   Optimal Control of Stochastic Differential Equations via Fokker-Planck Equations [J].
Anita, Stefana-Lucia .
APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 2) :1555-1583
[2]   A stochastic optimal control problem with feedback inputs [J].
Anita, Stefana-Lucia .
INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (03) :589-602
[3]  
[Anonymous], 1969, Quelques mthodes de rsolution des problmes aux limites non linaires
[4]  
BARBU V, 1993, ANAL CONTROL NONLINE
[5]   Uniqueness for nonlinear Fokker-Planck equations and for McKean-Vlasov SDEs: The degenerate case [J].
Barbu, Viorel ;
Roeckner, Michael .
JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (04)
[6]   Uniqueness for nonlinear Fokker-Planck equations and weak uniqueness for McKean-Vlasov SDEs (vol 9, pg 702, 2020) [J].
Barbu, Viorel ;
Rockner, Michael .
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2023, 11 (01) :426-431
[7]   Solutions for nonlinear Fokker-Planck equations with measures as initial data and McKean-Vlasov equations [J].
Barbu, Viorel ;
Roeckner, Michael .
JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (07)
[8]   Uniqueness for nonlinear Fokker-Planck equations and weak uniqueness for McKean-Vlasov SDEs [J].
Barbu, Viorel ;
Roeckner, Michael .
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2021, 9 (03) :702-713
[9]   OPTIMAL CONTROL OF NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS ON HILBERT SPACES [J].
Barbu, Viorel ;
Rockner, Michael ;
Zhang, Deng .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (04) :2383-2410
[10]   FROM NONLINEAR FOKKER-PLANCK EQUATIONS TO SOLUTIONS OF DISTRIBUTION DEPENDENT SDE [J].
Barbu, Viorel ;
Roeckner, Michael .
ANNALS OF PROBABILITY, 2020, 48 (04) :1902-1920