A relative version of Daugavet points and the Daugavet property

被引:0
作者
Abrahamsen, Trond A. [1 ]
Aliaga, Ramon J. [2 ]
Lima, Vegard [1 ]
Martiny, Andre [1 ]
Perreau, Yoel [3 ]
Prochazka, Antonin [4 ]
Veeorg, Triinu [3 ]
机构
[1] Univ Agder, Dept Math, N-4604 Kristiansand, Norway
[2] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Valencia 46022, Spain
[3] Univ Tartu, Inst Math & Stat, EE-51009 Tartu Linn, Estonia
[4] Univ Franche Comte, CNRS, Lab Math Besancon, UMR 6623, F-25000 Besancon, France
关键词
delta-points; Daugavet points; Lipschitz-free spaces; Daugavet property; DIAMETER; 2; PROPERTIES; BANACH-SPACES;
D O I
10.4064/sm240118-2-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce relative versions of Daugavet points and the Daugavet property, where the Daugavet behavior is localized inside of some supporting slice. These points present striking similarities with Daugavet points, but lie strictly between the notions of Daugavet points and triangle-points. We provide a geometric condition that a space with the Radon-Nikod & yacute;m property must satisfy in order to be able to contain a relative Daugavet point. We study relative Daugavet points in absolute sums of Banach spaces, and obtain positive stability results under local polyhedrality of the underlying absolute norm. We also get extreme differences between the relative Daugavet property, the Daugavet property, and the diametral local diameter 2 property. Finally, we study Daugavet points and triangle-points in subspaces of L1(mu) spaces. We show that the two notions coincide in the class of all Lipschitz-free spaces over subsets of R-trees. We prove that the diametral local diameter 2 property and the Daugavet property coincide for arbitrary subspaces of L1(mu), and that reflexive subspaces of L1(mu) do not contain triangle-points. A subspace of L1[0, 1] with a large subset of triangle-points, but with no relative Daugavet point, is constructed.
引用
收藏
页码:191 / 241
页数:52
相关论文
共 41 条
  • [1] Delta- and Daugavet points in Banach spaces
    Abrahamsen, T. A.
    Haller, R.
    Lima, V
    Pirk, K.
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2020, 63 (02) : 475 - 496
  • [2] Abrahamsen T. A., 2021, Trans. Amer. Math. Soc. Ser. B, V8, P379
  • [3] Delta-points and their implications for the geometry of Banach spaces
    Abrahamsen, Trond A.
    Aliaga, Ramon J.
    Lima, Vegard
    Martiny, Andre
    Perreau, Yoel
    Prochazka, Antonin
    Veeorg, Triinu
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (05):
  • [4] Delta-points in Banach spaces generated by adequate families
    Abrahamsen, Trond A.
    Lima, Vegard
    Martiny, Andre
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2022, 66 (03) : 421 - 434
  • [5] Asymptotic geometry and Delta-points
    Abrahamsen, Trond A.
    Lima, Vegard
    Martiny, Andre
    Perreau, Yoel
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (04)
  • [6] Diameter 2 properties and convexity
    Abrahamsen, Trond Arnold
    Hajek, Petr
    Nygaard, Olav
    Talponen, Jarno
    Troyanski, Stanimir
    [J]. STUDIA MATHEMATICA, 2016, 232 (03) : 227 - 242
  • [7] Albiac F, 2006, GRAD TEXTS MATH, V233, P1
  • [8] PURELY 1-UNRECTIFIABLE METRIC SPACES AND LOCALLY FLAT LIPSCHITZ FUNCTIONS
    Aliaga, Ramon J.
    Gartland, Chris
    Petitjean, Colin
    Prochazka, Antonin
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (05) : 3529 - 3567
  • [9] Extreme Points in Lipschitz-Free Spaces over Compact Metric Spaces
    Aliaga, Ramon J.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
  • [10] Embeddings of Lipschitz-free spaces into l1
    Aliaga, Ramon J.
    Petitjean, Colin
    Prochazka, Antonin
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (06)