Integrating single-cell multimodal epigenomic data using 1D convolutional neural networks

被引:0
|
作者
Gao, Chao [1 ]
Welch, Joshua D. [2 ]
机构
[1] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Comp Sci & Engn, 100 Washtenaw Ave, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1093/bioinformatics/btae705
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Recent experimental developments enable single-cell multimodal epigenomic profiling, which measures multiple histone modifications and chromatin accessibility within the same cell. Such parallel measurements provide exciting new opportunities to investigate how epigenomic modalities vary together across cell types and states. A pivotal step in using these types of data is integrating the epigenomic modalities to learn a unified representation of each cell, but existing approaches are not designed to model the unique nature of this data type. Our key insight is to model single-cell multimodal epigenome data as a multichannel sequential signal.Results We developed ConvNet-VAEs, a novel framework that uses one-dimensional (1D) convolutional variational autoencoders (VAEs) for single-cell multimodal epigenomic data integration. We evaluated ConvNet-VAEs on nano-CUT&Tag and single-cell nanobody-tethered transposition followed by sequencing data generated from juvenile mouse brain and human bone marrow. We found that ConvNet-VAEs can perform dimension reduction and batch correction better than previous architectures while using significantly fewer parameters. Furthermore, the performance gap between convolutional and fully connected architectures increases with the number of modalities, and deeper convolutional architectures can increase the performance, while the performance degrades for deeper fully connected architectures. Our results indicate that convolutional autoencoders are a promising method for integrating current and future single-cell multimodal epigenomic datasets.Availability and implementation The source code of VAE models and a demo in Jupyter notebook are available at https://github.com/welch-lab/ConvNetVAE
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Graph Neural Networks for Multimodal Single-Cell Data Integration
    Wen, Hongzhi
    Ding, Jiayuan
    Jin, Wei
    Wang, Yiqi
    Xie, Yuying
    Tang, Jiliang
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4153 - 4163
  • [2] Heartbeat Classification Using 1D Convolutional Neural Networks
    Shaker, Abdelrahman M.
    Tantawi, Manal
    Shedeed, Howida A.
    Tolba, Mohamed F.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2019, 2020, 1058 : 502 - 511
  • [3] Multimodal Emotion Recognition using Cross-Modal Attention and 1D Convolutional Neural Networks
    Krishna, D. N.
    Patil, Ankita
    INTERSPEECH 2020, 2020, : 4243 - 4247
  • [4] Single-Cell Phenotype Classification Using Deep Convolutional Neural Networks
    Duerr, Oliver
    Sick, Beate
    JOURNAL OF BIOMOLECULAR SCREENING, 2016, 21 (09) : 998 - 1003
  • [5] Detection of visual pursuits using 1D convolutional neural networks
    Carneiro, Alex Torquato S.
    Coutinho, Flavio Luiz
    Morimoto, Carlos H.
    PATTERN RECOGNITION LETTERS, 2024, 179 : 45 - 51
  • [6] Sunshine Duration Prediction Using 1D Convolutional Neural Networks
    Mulyadi, Andri
    Djamal, Esmeralda C.
    PROCEEDINGS OF THE 2019 6TH INTERNATIONAL CONFERENCE ON INSTRUMENTATION, CONTROL, AND AUTOMATION (ICA), 2019, : 77 - 81
  • [7] Driver behaviour detection using 1D convolutional neural networks
    Shahverdy, M.
    Fathy, M.
    Berangi, R.
    Sabokrou, M.
    ELECTRONICS LETTERS, 2021, 57 (03) : 119 - 122
  • [8] 1D convolutional neural networks and applications: A survey
    Kiranyaz, Serkan
    Avci, Onur
    Abdeljaber, Osama
    Ince, Turker
    Gabbouj, Moncef
    Inman, Daniel J.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 151
  • [9] 1D Convolutional Neural Networks for Detecting Nystagmus
    Newman, Jacob L.
    Phillips, John S.
    Cox, Stephen J.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (05) : 1814 - 1823
  • [10] Non-Invasive Prediction of Choledocholithiasis Using 1D Convolutional Neural Networks and Clinical Data
    Mena-Camilo, Enrique
    Salazar-Colores, Sebastian
    Aceves-Fernandez, Marco Antonio
    Lozada-Hernandez, Edgard Efren
    Ramos-Arreguin, Juan Manuel
    DIAGNOSTICS, 2024, 14 (12)