Investigation of Reactive Compatibilization on Degradable Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends with Lysine Diisocyanate

被引:0
|
作者
Chen, Jiaoyu [1 ]
Wang, Xin [1 ]
Huang, Yu [1 ]
Zhang, Xiao [1 ]
Sun, Long [1 ]
Lu, Lingjie [1 ]
Li, Xiangqiang [1 ]
Shen, Lunjie [1 ]
Hong, Jie [1 ]
Zhou, Weihua [1 ]
Wu, Yang [1 ,2 ]
机构
[1] Nanchang Univ, Sch Phys & Mat, Nanchang 330031, Peoples R China
[2] Fudan Univ, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
biodegradable polymer; Lysine diisocyanate; Poly(butylene adipate-co-terephthalate); Poly(lactic acid); reactive compatibilization; MECHANICAL-PROPERTIES; ACID);
D O I
10.1002/macp.202500033
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) (PLA/PBAT) blends have poor compatibility, and reactive compatibilization is the most effective approach to improve their compatibility. In this study, lysine diisocyanate (LDI) is employed as a reactive compatibilizer to improve the interfacial interactions within PLA/PBAT blends at various ratios (30/70, 50/50, and 70/30). The effects of LDI on the reactive mechanism, thermodynamic behavior, mechanical properties, and phase morphology of the blends are thoroughly investigated. Fourier Transform Infrared Spectroscopy (FTIR) analysis shows that LDI react with the carboxyl terminal group of the PLA and PBAT to form copolymers, which serve as a chemical bridge between the two phases. Thermodynamics behaviors show that LDI reduces the crystallization rate and crystallinity of the blends. Mechanical property studies prove that LDI significantly improves the comprehensive properties of the blends, and the elongation at break, elastic modulus, and tensile strength are optimal for LDI at 2 wt.%. Impact strength even exceeds 90kJ m(-2) for PLA/PBAT (50/50) blends at above 2 wt.% LDI. The morphology studied by Scanning Electron Microscopy (SEM) shows that the addition of LDI can emulsify the two-phase interface, change the sea-island structure into a co-continuous one, and improve the affinity between the two components.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Optimising Ductility of Poly(Lactic Acid)/Poly(Butylene Adipate-co-Terephthalate) Blends Through Co-continuous Phase Morphology
    Deng, Yixin
    Yu, Changyi
    Wongwiwattana, Peangpatu
    Thomas, Noreen L.
    JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2018, 26 (09) : 3802 - 3816
  • [22] Biodegradable Poly(butylene succinate) and Poly(butylene adipate-co-terephthalate) Blends: Reactive Extrusion and Performance Evaluation
    Muthuraj, Rajendran
    Misra, Manjusri
    Mohanty, Amar Kumar
    JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2014, 22 (03) : 336 - 349
  • [23] Preparation of Polymer Blends Between Poly(lactic acid) and Poly(butylene adipate-co-terephthalate) and Biodegradable Polymers as Compatibilizers
    Pivsa-Art, Weraporn
    Chaiyasat, Amorn
    Pivsa-Art, Sommai
    Yamane, Hideki
    Ohara, Hitomi
    10TH ECO-ENERGY AND MATERIALS SCIENCE AND ENGINEERING SYMPOSIUM, 2013, 34 : 549 - 554
  • [24] Morphological and mechanical properties of biodegradable poly(glycolic acid)/poly(butylene adipate-co-terephthalate) blends with in situ compatibilization
    Wang, Rong
    Sun, Xiaojie
    Chen, Lanlan
    Liang, Wenbin
    RSC ADVANCES, 2021, 11 (03) : 1241 - 1249
  • [25] Selective Localization of Carbon Nanotubes in Poly(lactic acid)/ Poly(butylene adipate-co-terephthalate) Blends with Improved Toughness
    Li, Guili
    Feng, Qiao
    Chen, Shufang
    Yin, Tianxin
    He, Yixin
    Xie, Dan
    Mao, Chenjing
    Shao, Chunguang
    Gao, Peng
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2024, 40 (07): : 63 - 69
  • [26] Effect of the Joncryl® ADR Compatibilizing Agent in Blends of Poly(butylene adipate-co-terephthalate)/Poly(lactic acid)
    Nunes, Edilene de C. D.
    de Souza, Alana G.
    Rosa, Derval dos S.
    MACROMOLECULAR SYMPOSIA, 2019, 383 (01)
  • [27] Effect of ultrasound on the properties of biodegradable polymer blends of poly(lactic acid) with poly(butylene adipate-co-terephthalate)
    Sangmook Lee
    Youngjoo Lee
    Jae Wook Lee
    Macromolecular Research, 2007, 15 : 44 - 50
  • [28] Reactive modification and compatibilization of poly(lactide) and poly(butylene adipate-co-terephthalate) blends with epoxy functionalized-poly(lactide) for blown film applications
    Schneider, Jeff
    Manjure, Shilpa
    Narayan, Ramani
    JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (16)
  • [29] Preparation, Characterization and Properties of Ternary Blends with Epoxidized Natural Rubber, Poly (lactic acid) and Poly (butylene adipate-co-terephthalate)
    Nampitch, Tarinee
    Magaraphan, Rathanawan
    ADVANCED MATERIALS AND STRUCTURES, PTS 1 AND 2, 2011, 335-336 : 762 - +
  • [30] Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate)
    Ren, Jie
    Fu, Hongye
    Ren, Tianbin
    Yuan, Weizhong
    CARBOHYDRATE POLYMERS, 2009, 77 (03) : 576 - 582