Artin-Schreier towers of finite fields

被引:0
|
作者
Cagliero, Leandro [1 ]
Herman, Allen [2 ]
Szechtman, Fernando [2 ]
机构
[1] Univ Nacl Cordoba, CIEM CONICET, FAMAF, Cordoba, Argentina
[2] Univ Regina, Dept Math & Stat, Regina, SK, Canada
关键词
Finite fields; Artin-Schreier extensions; Multiplicative order; BELL NUMBERS MODULO; HIGH-ORDER ELEMENTS; PERIOD; EXTENSIONS;
D O I
10.1016/j.ffa.2025.102606
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a prime number p, we consider the tower of finite fields F-p = L-1 subset of L-0 subset of L-1 subset of & ctdot;, where each step corresponds to an Artin-Schreier extension of degree p, so that for i >= 0, L-i = Li-1[c(i)], where c(i) is a root of X-p - X -a(i-1) and a(i-1)= (c(-1)& ctdot;c(i-1))(p-1), with c(-1 )= 1. We extend and strengthen to arbitrary primes prior work of Popovych for p = 2 on the multiplicative order O(c(i)) of the given generator ci for Li over Li-1. In particular, for i >= 0, we show that O(c(i)) = O(a(i)), except only when p = 2 and i = 1, and that O(c(i)) is equal to the product of the orders of cj modulo L-j-1(x), where 0 <= j <= i if p is odd, and i >= 2 and 1 <= j <= i if p = 2. We also show that for i >= 0, the Gal(L-i/Li-1)-conjugates of ai form a normal basis of L-i over Li-1. In addition, we obtain the minimal polynomial of c(1) over F-p in explicit form. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Fast arithmetics in Artin-Schreier towers over finite fields
    De Feo, Luca
    Schost, Eric
    JOURNAL OF SYMBOLIC COMPUTATION, 2012, 47 (07) : 771 - 792
  • [2] Fast Arithmetics in Artin-Schreier Towers over Finite Fields
    De Feo, Luca
    Schost, Eric
    ISSAC2009: PROCEEDINGS OF THE 2009 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2009, : 127 - 134
  • [3] On towers of function fields of Artin-Schreier type
    Beelen, P
    Garcia, A
    Stichtenoth, H
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2004, 35 (02): : 151 - 164
  • [4] A Class of Artin-Schreier Towers with Finite Genus
    San Ling
    Henning Stichtenoth
    Siman Yang
    Bulletin of the Brazilian Mathematical Society, 2005, 36 : 393 - 401
  • [5] On towers of function fields of Artin-Schreier type
    Peter Beelen
    Arnaldo Garcia
    Henning Stichtenoth
    Bulletin of the Brazilian Mathematical Society, 2004, 35 : 151 - 164
  • [6] A class of Artin-Schreier towers with finite genus
    Ling, S
    Stichtenoth, H
    Yang, S
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2005, 36 (03): : 393 - 401
  • [7] SOME ARTIN-SCHREIER TOWERS ARE EASY
    Garcia, Arnaldo
    Stichtenoth, Henning
    MOSCOW MATHEMATICAL JOURNAL, 2005, 5 (04) : 767 - 774
  • [8] Isomorphisms between Artin-Schreier towers
    Couveignes, JM
    MATHEMATICS OF COMPUTATION, 2000, 69 (232) : 1625 - 1631
  • [9] Tangential covers and infinite Artin-Schreier towers
    Treibich, Armando
    COMPTES RENDUS MATHEMATIQUE, 2016, 354 (12) : 1225 - 1229
  • [10] Infinite towers of Artin-Schreier defect extensions of rational function fields
    Blaszczok, Anna
    VALUATION THEORY IN INTERACTION, 2014, : 16 - 54