Development and validation of artificial intelligence models for early detection of postoperative infections (PERISCOPE): a multicentre study using electronic health record data

被引:0
作者
van der Meijden, Siri L. [1 ,2 ]
van Boekel, Anna M. [1 ]
Schinkelshoek, Laurens J. [2 ]
van Goor, Harry [3 ]
Steyerberg, Ewout W. [4 ]
Nelissen, Rob G. H. H. [5 ]
Mesotten, Dieter [6 ,7 ]
Geerts, Bart F. [2 ]
de Boer, Mark G. J. [8 ]
Arbous, M. Sesmu [1 ]
机构
[1] Leiden Univ, Med Ctr, Intens Care Unit, Albinusdreef 2, NL-2333 ZA Leiden, Netherlands
[2] Healthplus AI BV, Amsterdam, Netherlands
[3] Radboud Univ Nijmegen, Med Ctr, Gen Surg Dept, Nijmegen, Netherlands
[4] Leiden Univ, Med Ctr, Dept Biomed Data Sci, Leiden, Netherlands
[5] Leiden Univ, Med Ctr, Dept Orthopaed, Leiden, Netherlands
[6] Ziekenhuis Oost Limburg, Dept Anaesthesiol, Intens Care Med, Genk, Belgium
[7] UHasselt, Limburg Clin Res Ctr, Fac Med & Life Sci, Diepenbeek, Belgium
[8] Leiden Univ, Med Ctr, Dept Infect Dis, Leiden, Netherlands
来源
LANCET REGIONAL HEALTH-EUROPE | 2025年 / 49卷
关键词
Postoperative infection; Artificial intelligence; Multi-centre validation; Model updating; Clinical utility; SURGICAL COMPLICATIONS; ADVERSE EVENTS; SURGERY; MORTALITY; RISK;
D O I
10.1016/j.lanepe.2024.101163
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background Postoperative infections significantly impact patient outcomes and costs, exacerbated by late diagnoses, yet early reliable predictors are scarce. Existing artificial intelligence (AI) models for postoperative infection prediction often lack external validation or perform poorly in local settings when validated. We aimed to develop locally valid models as part of the PERISCOPE AI system to enable early detection, safer discharge, and more timely treatment of patients. Methods We developed and validated XGBoost models to predict postoperative infections within 7 and 30 days of surgery. Using retrospective pre-operative and intra-operative electronic health record data from 2014 to 2023 across various surgical specialities, the models were developed at Hospital A and validated and updated at Hospitals B and C in the Netherlands and Belgium. Model performance was evaluated before and after updating using the two most recent years of data as temporal validation datasets. Main outcome measures were model discrimination (area under the receiver operating characteristic curve (AUROC)), calibration (slope, intercept, and plots), and clinical utility (decision curve analysis with net benefit). Findings The study included 253,010 surgical procedures with 23,903 infections within 30-days. Discriminative performance, calibration properties, and clinical utility significantly improved after updating. Final AUROCs after updating for Hospitals A, B, and C were 0.82 (95% confidence interval (CI) 0.81-0.83), 0.82 (95% CI 0.81-0.83), and 0.91 (95% CI 0.90-0.91) respectively for 30-day predictions on the temporal validation datasets (2022-2023). Calibration plots demonstrated adequate correspondence between observed outcomes and predicted risk. All local models were deemed clinically useful as the net benefit was higher than default strategies (treat all and treat none) over a wide range of clinically relevant decision thresholds. Interpretation PERISCOPE can accurately predict overall postoperative infections within 7- and 30-days post-surgery. The robust performance implies potential for improving clinical care in diverse clinical target populations. This study supports the need for approaches to local updating of AI models to account for domain shifts in patient populations and data distributions across different clinical settings. Copyright (c) 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:12
相关论文
共 47 条
[1]  
[Anonymous], 2023, EU AI Act: first regulation on artificial intelligence
[2]  
[Anonymous], 2024, Gitlab code repository
[3]  
[Anonymous], 2024, Administration actions on AI
[4]   Guiding principles for the responsible development of artificial intelligence tools for healthcare [J].
Badal, Kimberly ;
Lee, Carmen M. ;
Esserman, Laura J. .
COMMUNICATIONS MEDICINE, 2023, 3 (01)
[5]   MySurgeryRisk: Development and Validation of a Machine-learning Risk Algorithm for Major Complications and Death After Surgery [J].
Bihorac, Azra ;
Ozrazgat-Baslanti, Tezcan ;
Ebadi, Ashkan ;
Motaei, Amir ;
Madkour, Mohcine ;
Pardalos, Panagote M. ;
Lipori, Gloria ;
Hogan, William R. ;
Efron, Philip A. ;
Moore, Frederick ;
Moldawer, Lyle L. ;
Wang, Daisy Zhe ;
Hobson, Charles E. ;
Rashidi, Parisi ;
Li, Xiaolin ;
Momcilovic, Petar .
ANNALS OF SURGERY, 2019, 269 (04) :652-662
[6]   Assessing the utility of deep neural networks in detecting superficial surgical site infections from free text electronic health record data [J].
Bonde, Alexander ;
Lorenzen, Stephan ;
Brixen, Gustav ;
Troelsen, Anders ;
Sillesen, Martin .
FRONTIERS IN DIGITAL HEALTH, 2024, 5
[7]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[8]   The Clavien-Dindo Classification of Surgical Complications Five-Year Experience [J].
Clavien, Pierre A. ;
Barkun, Jeffrey ;
de Oliveira, Michelle L. ;
Vauthey, Jean Nicolas ;
Dindo, Daniel ;
Schulick, Richard D. ;
de Santibanes, Eduardo ;
Pekolj, Juan ;
Slankamenac, Ksenija ;
Bassi, Claudio ;
Graf, Rolf ;
Vonlanthen, Rene ;
Padbury, Robert ;
Cameron, John L. ;
Makuuchi, Masatoshi .
ANNALS OF SURGERY, 2009, 250 (02) :187-196
[9]   TRIPOD plus AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods [J].
Collins, Gary S. ;
Moons, Karel G. M. ;
Dhiman, Paula ;
Riley, Richard ;
Beam, Andrew L. ;
Van Calster, Ben ;
Ghassemi, Marzyeh ;
Liu, Xiaoxuan ;
Reitsma, Johannes B. ;
van Smeden, Maarten ;
Boulesteix, Anne-Laure ;
Camaradou, Jennifer Catherine ;
Celi, Leo Anthony ;
Denaxas, Spiros ;
Denniston, Alastair K. ;
Glocker, Ben ;
Golub, Robert M. ;
Harvey, Hugh ;
Heinze, Georg ;
Hoffman, Michael M. ;
Kengne, Andre Pascal ;
Lam, Emily ;
Lee, Naomi ;
Loder, Elizabeth W. ;
Maier-Hein, Lena ;
Mateen, Bilal A. ;
McCradden, Melissa ;
Oakden-Rayner, Lauren ;
Ordish, Johan ;
Parnell, Richard ;
Rose, Sherri ;
Singh, Karandeep ;
Wynants, Laure ;
Logullo, Patricia .
BMJ-BRITISH MEDICAL JOURNAL, 2024, 385
[10]   Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review [J].
de Hond, Anne A. H. ;
Leeuwenberg, Artuur M. ;
Hooft, Lotty ;
Kant, Ilse M. J. ;
Nijman, Steven W. J. ;
van Os, Hendrikus J. A. ;
Aardoom, Jiska J. ;
Debray, Thomas P. A. ;
Schuit, Ewoud ;
van Smeden, Maarten ;
Reitsma, Johannes B. ;
Steyerberg, Ewout W. ;
Chavannes, Niels H. ;
Moons, Karel G. M. .
NPJ DIGITAL MEDICINE, 2022, 5 (01)