Searching for the sizable atomic-scale magnetism: A comparative study of boron/hydrogen chemisorbed on topological defects in graphene

被引:0
|
作者
Zhang, Shuai [1 ]
Cui, Bin [2 ]
Niu, Chunyao [3 ]
Wang, Fei [3 ]
Li, Chong [3 ]
Jia, Yu [3 ]
机构
[1] Henan Univ Sci & Technol, Sch Phys & Engn, Luoyang 471023, Peoples R China
[2] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
[3] Zhengzhou Univ, Sch Phys, Zhengzhou 450001, Peoples R China
关键词
Atomic-scale magnetism; Sizable magnetic moment; Topological defects; Graphene; 1ST-PRINCIPLES; ADSORPTION;
D O I
10.1016/j.physleta.2024.130176
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent experiments have identified that both boron (B) and hydrogen (H) atoms might induce atomic-scale magnetism on graphene. Using the first-principles calculations and analyses, we show that B adatom chemisorbed on 48-type topological defects in graphene not only enhances the adsorption energy dramatically, but also significantly induces a sizable atomic-scale spin moment 1.08 mu B. The underlying mechanism can be attributed to the abundant charge transfer of B adatom and local bonding environment (B/tetragonal ring), facilitating to form B-C covalent bonds. However, such spin polarization does not happen on 558-type defects. In sharp contrast, H adatom can not induce sizable atomic-scale magnetism on either 48- or 558-type defect. We further identity that the moderate kinetic barrier of B adatom along 48-type line defect makes it highly possible to achieve stable antiferromagnetic spin chain. Our findings might provide another feasible host material to realize stable and sizable atomic-scale magnetism of B adatom.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Atomic-scale control of graphene magnetism by using hydrogen atoms
    Gonzalez-Herrero, Hector
    Gomez-Rodriguez, Jose M.
    Mallet, Pierre
    Moaied, Mohamed
    Jose Palacios, Juan
    Salgado, Carlos
    Ugeda, Miguel M.
    Veuillen, Jean-Yves
    Yndurain, Felix
    Brihuega, Ivan
    SCIENCE, 2016, 352 (6284) : 437 - 441
  • [2] Atomic-scale magnetism of cobalt-intercalated graphene
    Decker, Regis
    Brede, Jens
    Atodiresei, Nicolae
    Caciuc, Vasile
    Bluegel, Stefan
    Wiesendanger, Roland
    PHYSICAL REVIEW B, 2013, 87 (04)
  • [3] Atomic-Scale Interfacial Magnetism in Fe/Graphene Heterojunction
    W. Q. Liu
    W. Y. Wang
    J. J. Wang
    F. Q. Wang
    C. Lu
    F. Jin
    A. Zhang
    Q. M. Zhang
    G. van der Laan
    Y. B. Xu
    Q. X. Li
    R. Zhang
    Scientific Reports, 5
  • [4] Atomic-Scale Interfacial Magnetism in Fe/Graphene Heterojunction
    Liu, W. Q.
    Wang, W. Y.
    Wang, J. J.
    Wang, F. Q.
    Lu, C.
    Jin, F.
    Zhang, A.
    Zhang, Q. M.
    van der Laan, G.
    Xu, Y. B.
    Li, Q. X.
    Zhang, R.
    SCIENTIFIC REPORTS, 2015, 5
  • [5] Atomic-scale tailoring of chemisorbed atomic oxygen on epitaxial graphene for graphene-based electronic devices
    Kim, Tae Soo
    Ahn, Taemin
    Kim, Tae-Hwan
    Choi, Hee Cheul
    Yeom, Han Woong
    APPLIED PHYSICS LETTERS, 2023, 123 (02)
  • [6] Atomic-Scale Electrical Field Mapping of Hexagonal Boron Nitride Defects
    Cretu, Ovidiu
    Ishizuka, Akimitsu
    Yanagisawa, Keiichi
    Ishizuka, Kazuo
    Kimoto, Koji
    ACS NANO, 2021, 15 (03) : 5316 - 5321
  • [7] Atomic-scale study of boron implantation into amorphous carbon
    Dai, Y. (ybdai@sjtu.edu.cn), 1600, American Institute of Physics Inc. (98):
  • [8] Atomic-scale study of the role of carbon on boron clustering
    Philippe, T.
    Duguay, S.
    Grob, J. J.
    Mathiot, D.
    Blavette, D.
    THIN SOLID FILMS, 2010, 518 (09) : 2406 - 2408
  • [9] Atomic-scale study of boron implantation into amorphous carbon
    Dai, YB
    Yan, YJ
    Wang, J
    Sun, BD
    He, XC
    Shen, HS
    JOURNAL OF APPLIED PHYSICS, 2005, 98 (01)
  • [10] Detecting the non-magnetism and magnetism switching of point defects in graphene at the atomic scale
    Wang, Tiantian
    Zou, Yuxiao
    Shi, Yurong
    Wang, Xin
    Wang, Fang
    Song, Guofeng
    Fang, Weihai
    Liu, Ying
    APPLIED SURFACE SCIENCE, 2022, 586