The dispersion of dilated lacunary sequences, with applications in multiplicative Diophantine approximation

被引:0
作者
Stefanescu, Eduard [1 ]
机构
[1] Graz Univ Technol, Inst Anal & Zahlentheorie, Steyrergasse 30, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
Number theory; Dispersion; Littlewood conjecture; METRIC THEORY; SPACINGS;
D O I
10.1016/j.aim.2024.110062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let ( a n ) n is an element of N be a lacunary sequence satisfying the Hadamard gap condition. We give upper bounds for the maximal gap of the set of dilates { a n alpha } n <= N modulo 1, in terms of N . For any lacunary sequence ( a n ) n is an element of N we prove the existence of a dilation factor alpha such that the maximal gap is of order at most (log N ) /N , and we prove that for Lebesgue almost all alpha the maximal gap is of order at most (log N ) 2+epsilon /N . The metric result is generalized to other measures satisfying a certain Fourier decay assumption. Both upper bounds are optimal up to a factor of logarithmic order, and the latter result improves a recent result of Chow and Technau. Finally, we show that our result implies an improved upper bound in the inhomogeneous version of Littlewood's problem in multiplicative Diophantine approximation. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:22
相关论文
共 37 条
  • [1] Aistleitner C., 2023, PREPRINT
  • [2] LARGE DEVIATION PRINCIPLES FOR LACUNARY SUMS
    Aistleitner, Christoph
    Gantert, Nina
    Kabluchko, Zakhar
    Prochno, Joscha
    Ramanan, Kavita
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (01) : 507 - 553
  • [3] Gap statistics and higher correlations for geometric progressions modulo one
    Aistleitner, Christoph
    Baker, Simon
    Technau, Niclas
    Yesha, Nadav
    [J]. MATHEMATISCHE ANNALEN, 2023, 385 (1-2) : 845 - 861
  • [4] Assani I., 2013, P ERG THEOR WORKSH U
  • [5] An inhomogeneous transference principle and Diophantine approximation
    Beresnevich, Victor
    Velani, Sanju
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2010, 101 : 821 - 851
  • [6] Bugeaud Y., 2012, Cambridge Tracts in Mathematics, V193, pxvi+300, DOI DOI 10.1017/CBO9781139017732
  • [7] The distribution of spacings of real-valued lacunary sequences modulo one
    Chaubey, Sneha
    Yesha, Nadav
    [J]. MATHEMATIKA, 2022, 68 (02) : 416 - 428
  • [8] Dispersion and Littlewood's conjecture
    Chow, Sam
    Technau, Niclas
    [J]. ADVANCES IN MATHEMATICS, 2024, 447
  • [9] FULLY INHOMOGENEOUS MULTIPLICATIVE DIOPHANTINE APPROXIMATION OF BADLY APPROXIMABLE NUMBERS
    Chow, Sam
    Zafeiropoulos, Agamemnon
    [J]. MATHEMATIKA, 2021, 67 (03) : 639 - 646
  • [10] Higher-rank Bohr sets and multiplicative diophantine approximation
    Chow, Sam
    Technau, Niclas
    [J]. COMPOSITIO MATHEMATICA, 2019, 155 (11) : 2214 - 2233