Transmission Map-Guided Joint Source-Channel Coding for Underwater Semantic Communication

被引:0
|
作者
Cheng, Simeng [1 ]
Jin, Zhigang [1 ]
Chang, Lixiang [1 ]
Liang, Jiawei [1 ]
Li, Haoyong [1 ]
Su, Yishan [1 ]
Li, Gen [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Data mining; Image coding; Underwater acoustics; Semantic communication; Transmitters; Image reconstruction; Degradation; Sensors; Receivers; Imaging; Semantic information; transmission map-guided joint source-channel coding (TG[!text type='JS']JS[!/text]CC); underwater channel; underwater semantic communication (SemCom); IMAGE-ENHANCEMENT; DESIGN; CODES;
D O I
10.1109/JSEN.2025.3542396
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Joint source-channel coding (JSCC) for semantic communication (SemCom) has achieved significant progress. However, due to the degradation of underwater images, directly using JSCC for underwater SemCom leads to inadequate semantic extraction. To this end, this article proposes a transmission map-guided JSCC (TGJSCC) for underwater SemCom to better extract and transmit the semantic information of underwater degradation images, called TGJSCC. Specifically, we design the TGJSCC encoder to extract abundant semantic information of underwater degraded images. TGJSCC encoder first uses the transmission map generated by the underwater imaging model to help JSCC locate the focal regions in underwater degraded images, and then computes the global information in the latent space to obtain abundant semantic information. To transmit semantic information over the limited underwater channel, the semantic importance compression module (SICM) is proposed to compress semantic information while retaining useful information. Finally, the TGJSCC decoder is designed to reconstruct raw underwater degraded images from the semantic information transmitted by the underwater channel. The experimental results and analysis demonstrate that compared with the traditional separation source-channel coding (SSCC) methods and JSCC methods, the underwater SemCom based on TGJSCC not only extracts abundant semantic information of underwater degradation images, but also recovers the high-precision images.
引用
收藏
页码:12198 / 12209
页数:12
相关论文
共 50 条
  • [1] Generative Joint Source-Channel Coding for Semantic Image Transmission
    Erdemir, Ecenaz
    Tung, Tze-Yang
    Dragotti, Pier Luigi
    Gunduz, Deniz
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (08) : 2645 - 2657
  • [2] Deep Joint Source-Channel Coding and Modulation for Underwater Acoustic Communication
    Inoue, Yoshiaki
    Hisano, Daisuke
    Maruta, Kazuki
    Hara-Azumi, Yuko
    Nakayama, Yu
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [3] Deep Joint Source-Channel Coding for Wireless Image Transmission with Semantic Importance
    Sun, Qizheng
    Guo, Caili
    Yang, Yang
    Chen, Jiujiu
    Tang, Rui
    Liu, Chuanhong
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [4] Lightweight Joint Source-Channel Coding for Semantic Communications
    Jia, Yunjian
    Huang, Zhen
    Luo, Kun
    Wen, Wanli
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (12) : 3161 - 3165
  • [5] Semantics-Guided Contrastive Joint Source-Channel Coding for Image Transmission
    Hua, Wenhui
    Chen, Dezhao
    Fang, Junli
    Chen, Lingyu
    Mota, Joao F. C.
    Hong, Xuemin
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 505 - 510
  • [6] Deep Joint Source-Channel Coding for Semantic Communications
    Xu, Jialong
    Tung, Tze-Yang
    Ai, Bo
    Chen, Wei
    Sun, Yuxuan
    Gunduz, Deniz
    IEEE COMMUNICATIONS MAGAZINE, 2023, 61 (11) : 42 - 48
  • [7] Hierarchical Multi-Granularity Joint Source-Channel Coding for Image Semantic Transmission
    Sun, Xiaochuan
    Yu, Jike
    Wu, Changcheng
    Li, Yingqi
    Zhang, Haijun
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (12) : 3325 - 3329
  • [8] Deep Source-Channel Coding for Sentence Semantic Transmission With HARQ
    Jiang, Peiwen
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (08) : 5225 - 5240
  • [9] Joint source-channel coding for progressive transmission of embedded source coders
    Chande, V
    Farvardin, N
    DCC '99 - DATA COMPRESSION CONFERENCE, PROCEEDINGS, 1999, : 52 - 61
  • [10] Joint Source-Channel Coding for Channel-Adaptive Digital Semantic Communications
    Park, Joohyuk
    Oh, Yongjeong
    Kim, Seonjung
    Jeon, Yo-Seb
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2025, 11 (01) : 75 - 89