A meta-transfer learning prediction method with few-shot data for the remaining useful life of rolling bearing

被引:0
|
作者
She, Daoming [1 ]
Duan, Yudan [1 ]
Yang, Zhichao [1 ]
Pecht, Michael [2 ]
机构
[1] Jiangsu Univ, Sch Mech Engn, 301 Xuefu Rd, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Univ Maryland, Ctr Adv Life Cycle Engn, College Pk, MD USA
来源
STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL | 2025年
基金
中国国家自然科学基金;
关键词
Meta-learning; transfer learning; remaining useful life; few-shot data; variable operating conditions; INDICATOR CONSTRUCTION; NEURAL-NETWORK;
D O I
10.1177/14759217251321080
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rolling bearings are essential components of rotating machinery. It is crucial to predict and manage the health of rolling bearings. This article proposes a meta transfer learning-based remaining useful life (RUL) prediction approach with few-shot data for rolling bearing. First, multiple subtasks under variable operating conditions are constructed. A subtask and cross-subtask-based gradient optimization model is employed to extract degradation knowledge adaptively. The batch feature norm differences method is presented to reduce the impact of negative transfer and poor transfer performance. Interdomain transferable features are obtained by minimizing the difference in the number of feature paradigms between the source and target domains. Therefore, the Meta-SGD transfer learning approach realizes the RUL prediction under few-shot data and variable operating conditions. Two cases validate the effectiveness of the presented method.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Prior knowledge-embedded meta-transfer learning for few-shot fault diagnosis under variable operating conditions
    Lei, Zihao
    Zhang, Ping
    Chen, Yuejian
    Feng, Ke
    Wen, Guangrui
    Liu, Zheng
    Yan, Ruqiang
    Chen, Xuefeng
    Yang, Chunsheng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 200
  • [32] Unsupervised Domain Deep Transfer Learning Approach for Rolling Bearing Remaining Useful Life Estimation
    Rathore, Maan Singh
    Harsha, S. P.
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2024, 24 (02)
  • [33] Rolling bearing remaining useful life prediction method based on vibration signal and mechanism model
    Zhao, Xiuliang
    Yang, Ye
    Huang, Qian
    Fu, Qiang
    Wang, Ruochen
    Wang, Limei
    APPLIED ACOUSTICS, 2025, 228
  • [34] Brain-Inspired Meta-Learning for Few-Shot Bearing Fault Diagnosis
    Wang, Jun
    Sun, Chuang
    Nandi, Asoke K.
    Yan, Ruqiang
    Chen, Xuefeng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [35] A novel Switching Unscented Kalman Filter method for remaining useful life prediction of rolling bearing
    Cui, Lingli
    Wang, Xin
    Xu, Yonggang
    Jiang, Hong
    Zhou, Jianping
    MEASUREMENT, 2019, 135 : 678 - 684
  • [36] An adversarial transfer network with supervised metric for remaining useful life prediction of rolling bearing under multiple working conditions
    Zhuang, Jichao
    Jia, Minping
    Zhao, Xiaoli
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 225
  • [37] Data augmentation for rolling bearing fault diagnosis using an enhanced few-shot Wasserstein auto-encoder with meta-learning
    Pei, Zeyu
    Jiang, Hongkai
    Li, Xingqiu
    Zhang, Jianjun
    Liu, Shaowei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (08)
  • [38] Adaptive Meta Transfer Learning with Efficient Self-Attention for Few-Shot Bearing Fault Diagnosis
    Zhao, Jun
    Tang, Tang
    Yu, Ying
    Wang, Jingwei
    Yang, Tianyuan
    Chen, Ming
    Wu, Jie
    NEURAL PROCESSING LETTERS, 2023, 55 (02) : 949 - 968
  • [39] Few-Shot Human Motion Prediction via Meta-learning
    Gui, Liang-Yan
    Wang, Yu-Xiong
    Ramanan, Deva
    Moura, Jose M. F.
    COMPUTER VISION - ECCV 2018, PT VIII, 2018, 11212 : 441 - 459
  • [40] Remaining useful life prognostics for the rolling bearing based on a hybrid data-driven method
    Guo, Runxia
    Wang, Yingang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2021, 235 (04) : 517 - 531