Detection of metastatic breast carcinoma in sentinel lymph node frozen sections using an artificial intelligence-assisted system

被引:0
作者
Chang, Chia-Ping [1 ]
Hsu, Chih-Yi [1 ,2 ]
Wang, Hsiang Sheng [3 ]
Feng, Peng-Chuna [1 ]
Liang, Wen-Yih [1 ,2 ]
机构
[1] Taipei Vet Gen Hosp, Dept Pathol & Lab Med, 201,Sect 2,Shi Pai Rd, Taipei 112, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Sch Med, Taipei 112, Taiwan
[3] Chang Gung Mem Hosp, Dept Pathol, Taoyuan 33305, Taiwan
关键词
Breast Cancer; Micrometastasis; Sentinel Lymph Nodes; Frozen Sections; Artifi cal Intelligence; CANCER; MULTICENTER; SURGERY; TRIAL;
D O I
10.1016/j.prp.2025.155836
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
We developed an automatic method based on a convolutional neural network (CNN) that identifies metastatic lesions in whole slide images (WSI) of intraoperative frozen sections from sentinel lymph nodes in breast cancer. A total of 954 sentinel lymph node frozen sections, encompassing all types of breast cancer, were collected and examined at our institution between January 1, 2021, and September 27, 2022. Seventy-two cases from a total of 954 cases, including 50 macrometastases, 16 micrometastases, and 6 negatives, were selected and annotated for training a model, which was a self-developed platform (EasyPath) built using R 4.1.3 accompanied by Python 3.7 as the reticulate package. Another 105 metastasis-positive and 80 metastasis-negative cases from the remaining 882 cases were collected to validate and test the algorithm. Our algorithm successfully identified 103 cases (98 %) of metastases, including 85 cases of macrometastases and 18 cases of micrometastasis, with the inference time averaging 87.3 seconds per case. The algorithm correctly identified all of the macrometastases and 90 % of the micrometastases. The sensitivity for detecting micrometastases significantly outperformed that of the pathologists (p = 0.014, McNemar's test). Furthermore, we provide a workflow that deploys our algorithm into the daily practice of assessing intraoperative frozen sections. Our algorithm provides a robust backup for detecting metastases, particularly for high sensitivity for micrometastases, which will minimize errors in the pathological assessment of intraoperative frozen section of sentinel lymph nodes.
引用
收藏
页数:6
相关论文
共 28 条
[1]   Morbidity Results From the NSABP B-32 Trial Comparing Sentinel Lymph Node Dissection Versus Axillary Dissection [J].
Ashikaga, Takamaru ;
Krag, David N. ;
Land, Stephanie R. ;
Julian, Thomas B. ;
Anderson, Stewart J. ;
Brown, Ann M. ;
Skelly, Joan M. ;
Harlow, Seth P. ;
Weaver, Donald L. ;
Mamounas, Eleftherios P. ;
Costantino, Joseph P. ;
Wolmark, Norman .
JOURNAL OF SURGICAL ONCOLOGY, 2010, 102 (02) :111-118
[2]   From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge [J].
Bandi, Peter ;
Geessink, Oscar ;
Manson, Quirine ;
van Dijk, Marcory ;
Balkenhol, Maschenka ;
Hermsen, Meyke ;
Bejnordi, Babak Ehteshami ;
Lee, Byungjae ;
Paeng, Kyunghyun ;
Zhong, Aoxiao ;
Li, Quanzheng ;
Zanjani, Farhad Ghazvinian ;
Zinger, Svitlana ;
Fukuta, Keisuke ;
Komura, Daisuke ;
Ovtcharov, Vlado ;
Cheng, Shenghua ;
Zeng, Shaoqun ;
Thagaard, Jeppe ;
Dahl, Anders B. ;
Lin, Huangjing ;
Chen, Hao ;
Jacobsson, Ludwig ;
Hedlund, Martin ;
Cetin, Melih ;
Halici, Eren ;
Jackson, Hunter ;
Chen, Richard ;
Both, Fabian ;
Franke, Joerg ;
Kusters-Vandevelde, Heidi ;
Vreuls, Willem ;
Bult, Peter ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Litjens, Geert .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) :550-560
[3]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[4]   A deep learning algorithm with high sensitivity for the detection of basal cell carcinoma in Mohs micrographic surgery frozen sections [J].
Campanella, Gabriele ;
Nehal, Kishwer S. ;
Lee, Erica H. ;
Rossi, Anthony ;
Possum, Brandon ;
Manuel, Genna ;
Fuchs, Thomas J. ;
Busam, Klaus J. .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2021, 85 (05) :1285-1286
[5]   Artificial IntelligenceeAided Diagnosis of Breast Cancer Lymph Node Metastasis on Histologic Slides in a Digital Workflow [J].
Challa, Bindu ;
Tahir, Maryam ;
Hu, Yan ;
Kellough, David ;
Lujan, Giovani ;
Sun, Shaoli ;
Parwani, Anil, V ;
Li, Zaibo .
MODERN PATHOLOGY, 2023, 36 (08)
[6]   Identification of misdiagnosis by deep neural networks on a histopathologic review of breast cancer lymph node metastases [J].
Chen, Cancan ;
Zheng, Shan ;
Guo, Lei ;
Yang, Xuebing ;
Song, Yan ;
Li, Zhuo ;
Zhu, Yanwu ;
Liu, Xiaoqi ;
Li, Qingzhuang ;
Zhang, Huijuan ;
Feng, Ning ;
Zhao, Zuxuan ;
Qiu, Tinglin ;
Du, Jun ;
Guo, Qiang ;
Zhang, Wensheng ;
Shi, Wenzhao ;
Ma, Jianhui ;
Sun, Fenglong .
SCIENTIFIC REPORTS, 2022, 12 (01)
[7]   Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS): a randomised, multicentre, open-label, phase 3 non-inferiority trial [J].
Donker, Mila ;
van Tienhoven, Geertjan ;
Straver, Marieke E. ;
Meijnen, Philip ;
van de Velde, Cornelis J. H. ;
Mansel, Robert E. ;
Cataliotti, Luigi ;
Westenberg, A. Helen ;
Klinkenbijl, Jean H. G. ;
Orzalesi, Lorenzo ;
Bouma, Willem H. ;
van der Mijle, Huub C. J. ;
Nieuwenhuijzen, Grard A. P. ;
Veltkamp, Sanne C. ;
Slaets, Leen ;
Duez, Nicole J. ;
de Graaf, Peter W. ;
van Dalen, Thijs ;
Marinelli, Andreas ;
Rijna, Herman ;
Snoj, Marko ;
Bundred, Nigel J. ;
Merkus, Jos W. S. ;
Belkacemi, Yazid ;
Petignat, Patrick ;
Schinagl, Dominic A. X. ;
Coens, Corneel ;
Messina, Carlo G. M. ;
Bogaerts, Jan ;
Rutgers, Emiel J. T. .
LANCET ONCOLOGY, 2014, 15 (12) :1303-1310
[8]   The diagnostic accuracy of intraoperative frozen section biopsy for diagnosis of sentinel lymph node metastasis in breast cancer patients: a meta-analysis [J].
Elshanbary, Alaa Ahmed ;
Awad, Alaa Abdelsameia ;
Abdelsalam, Alaa ;
Ibrahim, Islam H. ;
Abdel-Aziz, Walid ;
Darwish, Youssef Bahaaeldin ;
Isa, Alaa Saad ;
Drid, Boutheyna ;
Mustafa, Marwa Gamal ;
Allam, Radwa Hamdy ;
Abo Ali, Amira A. ;
Nourelden, Anas Zakarya ;
Ragab, Khaled Mohamed ;
AlGwaiz, Hussah I. M. ;
Awaji, Aeshah A. ;
Germoush, Mousa O. ;
Albrakati, Ashraf ;
Piscopo, Marina ;
Ghaboura, Nehmat ;
Zaazouee, Mohamed Sayed .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (32) :47931-47941
[9]   Axillary dissection versus no axillary dissection in patients with breast cancer and sentinel-node micrometastases (IBCSG 23-01): 10-year follow-up of a randomised, controlled, phase 3 trial [J].
Galimberti, Viviana ;
Cole, Bernard F. ;
Viale, Giuseppe ;
Veronesi, Paolo ;
Vicini, Elisa ;
Intra, Mattia ;
Mazzarol, Giovanni ;
Massarut, Samuele ;
Zgajnar, Janez ;
Taffurelli, Mario ;
Littlejohn, David ;
Knauer, Michael ;
Tondini, Carlo ;
Di Leo, Angelo ;
Colleoni, Marco ;
Regan, Meredith M. ;
Coates, Alan S. ;
Gelber, Richard D. ;
Goldhirsch, Aron .
LANCET ONCOLOGY, 2018, 19 (10) :1385-1393
[10]   Sentinel-Lymph-Node-Based Management or Routine Axillary Clearance? One-Year Outcomes of Sentinel Node Biopsy Versus Axillary Clearance (SNAC): A Randomized Controlled Surgical Trial [J].
Gill, Grantley .
ANNALS OF SURGICAL ONCOLOGY, 2009, 16 (02) :266-275