Exploring quantum localization with machine learning

被引:0
作者
Montes, J. [3 ]
Ermann, Leonardo [2 ]
Rivas, Alejandro M. F. [2 ]
Borondo, F. [1 ]
Carlo, Gabriel G. [2 ]
机构
[1] Univ Autonoma Madrid, Dept Quim, Madrid 28049, Spain
[2] Consejo Nacl Invest Cient & Tecn, DEPT FIS, Comis Nacl Energia Atom, Ave Libertador 8250, RA-1429 BUENOS AIRES, Argentina
[3] Univ Carlos III Madrid, Dept Stat, Madrid, Spain
关键词
Quantum localization; Neural Networks; AlexNet; Deep learning; Machine learning; Semiclassical limit; SCATTERING;
D O I
10.1016/j.physa.2024.130310
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce an efficient neural network (NN) architecture for classifying wave functions in terms of their localization (probability concentration) in a specific region of the quantum phase space. Our approach integrates a versatile quantum phase space parametrization leading to a custom "quantum" NN, with the pattern recognition capabilities of a modified convolutional model. This design accepts wave functions of any dimension as inputs and makes accurate predictions at an affordable computational cost. This scalability becomes crucial to explore the localization rate at the semiclassical limit -i.e. at large Hilbert space dimensions N = (2 pi` ) -1 - long standing question in the quantum scattering field. Moreover, the physical meaning built the model allows for the interpretation of the learning process.
引用
收藏
页数:11
相关论文
共 36 条
[21]  
Hannay J. H., 1980, Physica D, V1D, P267, DOI 10.1016/0167-2789(80)90026-3
[22]   Emerging Extraction Strategies in Analytical Chemistry [J].
Hansen, Frederik A. ;
Pedersen-Bjergaard, Stig .
ANALYTICAL CHEMISTRY, 2020, 92 (01) :2-15
[23]   Chaotic Resonance Modes in Dielectric Cavities: Product of Conditionally Invariant Measure and Universal Fluctuations [J].
Ketzmerick, Roland ;
Clauss, Konstantin ;
Fritzsch, Felix ;
Baecker, Arnd .
PHYSICAL REVIEW LETTERS, 2022, 129 (19)
[24]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[25]   Bridging nano-optics and condensed matter formalisms in a unified description of inelastic scattering of relativistic electron beams [J].
Lourenco-Martins, Hugo ;
Lubk, Axel ;
Kociak, Mathieu .
SCIPOST PHYSICS, 2021, 10 (02)
[26]   Transverse velocity scaling in 197Au+197Au fragmentation -: art. no. 064606 [J].
Lukasik, J ;
Hudan, S ;
Lavaud, F ;
Turzó, K ;
Auger, G ;
Bacri, CO ;
Begemann-Blaich, ML ;
Bellaize, N ;
Bittiger, R ;
Bocage, F ;
Borderie, B ;
Bougault, R ;
Bouriquet, B ;
Buchet, P ;
Charvet, JL ;
Chbihi, A ;
Dayras, R ;
Doré, D ;
Durand, D ;
Frankland, JD ;
Galichet, E ;
Gourio, D ;
Guinet, D ;
Hurst, B ;
Lautesse, P ;
Laville, JL ;
Leduc, C ;
Le Fèvre, A ;
Legrain, R ;
Lopez, O ;
Lynen, U ;
Müller, WFJ ;
Nalpas, L ;
Orth, H ;
Plagnol, E ;
Rosato, E ;
Saija, A ;
Sfienti, C ;
Schwarz, C ;
Steckmeyer, JC ;
Tabacaru, G ;
Tamain, B ;
Trautmann, W ;
Trzcinski, A ;
Vient, E ;
Vigilante, M ;
Volant, C ;
Zwieglinski, B ;
Botvina, AS .
PHYSICAL REVIEW C, 2002, 66 (06)
[27]   Distribution of reflection coefficients in absorbing chaotic microwave cavities -: art. no. 174102 [J].
Méndez-Sánchez, RA ;
Kuhl, U ;
Barth, M ;
Lewenkopf, CH ;
Stöckmann, HJ .
PHYSICAL REVIEW LETTERS, 2003, 91 (17)
[28]   Average localization of resonances on the quantum repeller [J].
Montes, J. ;
Carlo, Gabriel G. ;
Borondo, F. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 132
[29]   Quantum chaotic resonances from short periodic orbits [J].
Novaes, M. ;
Pedrosa, J. M. ;
Wisniacki, D. ;
Carlo, G. G. ;
Keating, J. P. .
PHYSICAL REVIEW E, 2009, 80 (03)
[30]   Resonances in open quantum maps [J].
Novaes, Marcel .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (14)