Exploring quantum localization with machine learning

被引:0
作者
Montes, J. [3 ]
Ermann, Leonardo [2 ]
Rivas, Alejandro M. F. [2 ]
Borondo, F. [1 ]
Carlo, Gabriel G. [2 ]
机构
[1] Univ Autonoma Madrid, Dept Quim, Madrid 28049, Spain
[2] Consejo Nacl Invest Cient & Tecn, DEPT FIS, Comis Nacl Energia Atom, Ave Libertador 8250, RA-1429 BUENOS AIRES, Argentina
[3] Univ Carlos III Madrid, Dept Stat, Madrid, Spain
关键词
Quantum localization; Neural Networks; AlexNet; Deep learning; Machine learning; Semiclassical limit; SCATTERING;
D O I
10.1016/j.physa.2024.130310
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce an efficient neural network (NN) architecture for classifying wave functions in terms of their localization (probability concentration) in a specific region of the quantum phase space. Our approach integrates a versatile quantum phase space parametrization leading to a custom "quantum" NN, with the pattern recognition capabilities of a modified convolutional model. This design accepts wave functions of any dimension as inputs and makes accurate predictions at an affordable computational cost. This scalability becomes crucial to explore the localization rate at the semiclassical limit -i.e. at large Hilbert space dimensions N = (2 pi` ) -1 - long standing question in the quantum scattering field. Moreover, the physical meaning built the model allows for the interpretation of the learning process.
引用
收藏
页数:11
相关论文
共 36 条
[1]   Entanglement detection with artificial neural networks [J].
Asif, Naema ;
Khalid, Uman ;
Khan, Awais ;
Duong, Trung Q. ;
Shin, Hyundong .
SCIENTIFIC REPORTS, 2023, 13 (01)
[2]   Spatial structure of lasing modes in wave-chaotic semiconductor microcavities [J].
Bittner, Stefan ;
Kim, Kyungduk ;
Zeng, Yongquan ;
Wang, Qi Jie ;
Cao, Hui .
NEW JOURNAL OF PHYSICS, 2020, 22 (08)
[3]   RANDOM-MATRIX DESCRIPTION OF CHAOTIC SCATTERING - SEMICLASSICAL APPROACH [J].
BLUMEL, R ;
SMILANSKY, U .
PHYSICAL REVIEW LETTERS, 1990, 64 (03) :241-244
[4]   CLASSICAL IRREGULAR SCATTERING AND ITS QUANTUM-MECHANICAL IMPLICATIONS [J].
BLUMEL, R ;
SMILANSKY, U .
PHYSICAL REVIEW LETTERS, 1988, 60 (06) :477-480
[5]   Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics [J].
Cao, Hui ;
Wiersig, Jan .
REVIEWS OF MODERN PHYSICS, 2015, 87 (01) :61-111
[6]   Machine learning and the physical sciences [J].
Carleo, Giuseppe ;
Cirac, Ignacio ;
Cranmer, Kyle ;
Daudet, Laurent ;
Schuld, Maria ;
Tishby, Naftali ;
Vogt-Maranto, Leslie ;
Zdeborova, Lenka .
REVIEWS OF MODERN PHYSICS, 2019, 91 (04)
[7]   Theory of short periodic orbits for partially open quantum maps [J].
Carlo, Gabriel G. ;
Benito, R. M. ;
Borondo, F. .
PHYSICAL REVIEW E, 2016, 94 (01)
[8]   Classical transients and the support of open quantum maps [J].
Carlo, Gabriel G. ;
Wisniacki, D. A. ;
Ermann, Leonardo ;
Benito, R. M. ;
Borondo, F. .
PHYSICAL REVIEW E, 2013, 87 (01)
[9]   Local random vector model for semiclassical fractal structure of chaotic resonance states [J].
Clauss, Konstantin ;
Ketzmerick, Roland .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (20)
[10]   Universal intensity statistics of multifractal resonance states [J].
Clauss, Konstantin ;
Kunzmann, Felix ;
Baecker, Arnd ;
Ketzmerick, Roland .
PHYSICAL REVIEW E, 2021, 103 (04)