Exploring the Influence of Generalized Kernels on Green's Function in Fractional Differential Equations

被引:0
作者
Aljohani, Sarah [1 ]
Rashid, Maliha [2 ]
Kalsoom, Amna [2 ]
Mlaiki, Nabil [1 ]
机构
[1] Prince Sultan Univ, Dept Math & Sci, POB 66833, Riyadh 11586, Saudi Arabia
[2] Int Islamic Univ, Dept Math & Stat, Islamabad, Pakistan
来源
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS | 2024年 / 22卷
关键词
fractional di ff erential equations; analytic kernel; Green's function; SYNCHRONIZATION; DERIVATIVES; ORDER;
D O I
10.28924/2291-8639-22-2024-188
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The basic purpose of this article is to define the Green's function in order to provide the solution of fractional differential equations in the presence of general analytic kernel. Using the technique of Laplace and Fourier transforms, we construct the Green's function for ordinary and partial fractional differential equations. The presented results will provide the generalization of some models existing in the literature. Some examples are also provided to prove the results for some particular cases.
引用
收藏
页数:17
相关论文
共 27 条
  • [1] A higher-order extension of Atangana-Baleanu fractional operators with respect to another function and a Gronwall-type inequality
    Abdeljawad, Thabet
    Thabet, Sabri T. M.
    Kedim, Imed
    Ayari, M. Iadh
    Khan, Aziz
    [J]. BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [2] Atangana A, 2016, Arxiv, DOI arXiv:1602.03408
  • [3] Baleanu D., 2016, WORLD SCIENTIFIC, DOI [10.1142/10044, DOI 10.1142/10044]
  • [4] A fractional derivative with two singular kernels and application to a heat conduction problem
    Baleanu, Dumitru
    Jleli, Mohamed
    Kumar, Sunil
    Samet, Bessem
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [5] On some new properties of fractional derivatives with Mittag-Leffler kernel
    Baleanu, Dumitru
    Fernandez, Arran
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 : 444 - 462
  • [6] LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2
    CAPUTO, M
    [J]. GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05): : 529 - &
  • [7] Heat kernel estimates for time fractional equations
    Chen, Zhen-Qing
    Kim, Panki
    Kumagai, Takashi
    Wang, Jian
    [J]. FORUM MATHEMATICUM, 2018, 30 (05) : 1163 - 1192
  • [8] Numerical Computation of a Fractional Derivative with Non-Local and Non-Singular Kernel
    Djida, J. D.
    Atangana, A.
    Area, I.
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2017, 12 (03) : 4 - 13
  • [9] On fractional calculus with general analytic kernels
    Fernandez, Arran
    Ozarslan, Mehmet Ali
    Baleanu, Dumitru
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 354 : 248 - 265
  • [10] The Prabhakar or three parameter Mittag-Leffler function: Theory and application
    Garra, Roberto
    Garrappa, Roberto
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 56 : 314 - 329