Gamification of motor imagery brain-computer interface training protocols: A systematic review

被引:0
|
作者
Atilla, Fred [1 ]
Postma, Marie [1 ]
Alimardani, Maryam [2 ]
机构
[1] Tilburg Univ, Dept Cognit Sci & Artificial Intelligence, Tilburg, Netherlands
[2] Vrije Univ Amsterdam, Dept Comp Sci, Amsterdam, Netherlands
来源
COMPUTERS IN HUMAN BEHAVIOR REPORTS | 2024年 / 16卷
关键词
Brain-computer interface; BCI inefficiency; User training; User experience; Gamification; Serious game; USER-CENTERED DESIGN; VIRTUAL-REALITY; GAME DESIGN; BCI; FEEDBACK; PERFORMANCE; ELEMENTS; VR; REHABILITATION; NEUROFEEDBACK;
D O I
10.1016/j.chbr.2024.100508
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Current Motor Imagery Brain-Computer Interfaces (MI-BCI) require a lengthy and monotonous training procedure to train both the system and the user. Considering many users struggle with effective control of MI-BCI systems, a more user-centered approach to training might help motivate users and facilitate learning, alleviating inefficiency of the BCI system. With the increase of BCI-controlled games, researchers have suggested using game principles for BCI training, as games are naturally centered on the player. This review identifies and evaluates the application of game design elements to MI-BCI training, a process known as gamification. Through a systematic literature search, we examined how MI-BCI training protocols have been gamified and how specific game elements impacted the training outcomes. We identified 86 studies that employed gamified MI-BCI protocols in the past decade. The prevalence and reported effects of individual game elements on user experience and performance were extracted and synthesized. Results reveal that MI-BCI training protocols are most often gamified by having users move an avatar in a virtual environment that provides visual feedback. Furthermore, in these virtual environments, users were provided with goals that guided their actions. Using gamification, the reviewed protocols allowed users to reach effective MI-BCI control, with studies reporting positive effects of four individual elements on user performance and experience, namely: feedback, avatars, assistance, and social interaction. Based on these elements, this review makes current and future recommendations for effective gamification, such as the use of virtual reality and adaptation of game difficulty to user skill level.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] A method from offline analysis to online training for the brain-computer interface based on motor imagery and speech imagery
    Wang, Li
    Huang, Weijian
    Yang, Zhao
    Hu, Xiao
    Zhang, Chun
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 62
  • [42] Virtual Reality Embodiment in Motor Imagery Brain–Computer Interface Training
    Škola F.
    Liarokapis F.
    SN Computer Science, 4 (1)
  • [43] A systematic review on hybrid EEG/fNIRS in brain-computer interface
    Liu, Ziming
    Shore, Jeremy
    Wang, Miao
    Yuan, Fengpei
    Buss, Aaron
    Zhao, Xiaopeng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68 (68)
  • [44] Discrimination of Rest, Motor Imagery and Movement for Brain-Computer Interface Applications
    Ozturk, Nedime
    Yilmaz, Bulent
    2018 MEDICAL TECHNOLOGIES NATIONAL CONGRESS (TIPTEKNO), 2018,
  • [45] Development of a Wearable Motor-Imagery-Based Brain-Computer Interface
    Lin, Bor-Shing
    Pan, Jeng-Shyang
    Chu, Tso-Yao
    Lin, Bor-Shyh
    JOURNAL OF MEDICAL SYSTEMS, 2016, 40 (03) : 1 - 8
  • [46] Electroencephalography-Based Brain-Computer Interface Motor Imagery Classification
    Mohammadi, Ehsan
    Daneshmand, Parisa Ghaderi
    Khorzooghi, Seyyed Mohammad Sadegh Moosavi
    JOURNAL OF MEDICAL SIGNALS & SENSORS, 2022, 12 (01): : 40 - 47
  • [47] Execution, assessment and improvement methods of motor imagery for brain-computer interface
    Tian G.
    Chen J.
    Ding P.
    Gong A.
    Wang F.
    Luo J.
    Dong Y.
    Zhao L.
    Dang C.
    Fu Y.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2021, 38 (03): : 434 - 446
  • [48] Implementation of a brain-computer interface based on three states of motor imagery
    Wang, Yijun
    Hong, Bo
    Gao, Xiaorong
    Gao, Shangkai
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 5059 - 5062
  • [49] Design of a Robotic Wheelchair with a Motor Imagery based Brain-Computer Interface
    Kim, Keun-Tae
    Carlson, Tom
    Lee, Seong-Whan
    2013 IEEE INTERNATIONAL WINTER WORKSHOP ON BRAIN-COMPUTER INTERFACE (BCI), 2013, : 46 - 48
  • [50] Feature Extraction of Brain-Computer Interface Electroencephalogram Based on Motor Imagery
    Shi, Tianwei
    Ren, Ling
    Cui, Wenhua
    IEEE SENSORS JOURNAL, 2020, 20 (20) : 11787 - 11794