Gamification of motor imagery brain-computer interface training protocols: A systematic review

被引:0
|
作者
Atilla, Fred [1 ]
Postma, Marie [1 ]
Alimardani, Maryam [2 ]
机构
[1] Tilburg Univ, Dept Cognit Sci & Artificial Intelligence, Tilburg, Netherlands
[2] Vrije Univ Amsterdam, Dept Comp Sci, Amsterdam, Netherlands
来源
COMPUTERS IN HUMAN BEHAVIOR REPORTS | 2024年 / 16卷
关键词
Brain-computer interface; BCI inefficiency; User training; User experience; Gamification; Serious game; USER-CENTERED DESIGN; VIRTUAL-REALITY; GAME DESIGN; BCI; FEEDBACK; PERFORMANCE; ELEMENTS; VR; REHABILITATION; NEUROFEEDBACK;
D O I
10.1016/j.chbr.2024.100508
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Current Motor Imagery Brain-Computer Interfaces (MI-BCI) require a lengthy and monotonous training procedure to train both the system and the user. Considering many users struggle with effective control of MI-BCI systems, a more user-centered approach to training might help motivate users and facilitate learning, alleviating inefficiency of the BCI system. With the increase of BCI-controlled games, researchers have suggested using game principles for BCI training, as games are naturally centered on the player. This review identifies and evaluates the application of game design elements to MI-BCI training, a process known as gamification. Through a systematic literature search, we examined how MI-BCI training protocols have been gamified and how specific game elements impacted the training outcomes. We identified 86 studies that employed gamified MI-BCI protocols in the past decade. The prevalence and reported effects of individual game elements on user experience and performance were extracted and synthesized. Results reveal that MI-BCI training protocols are most often gamified by having users move an avatar in a virtual environment that provides visual feedback. Furthermore, in these virtual environments, users were provided with goals that guided their actions. Using gamification, the reviewed protocols allowed users to reach effective MI-BCI control, with studies reporting positive effects of four individual elements on user performance and experience, namely: feedback, avatars, assistance, and social interaction. Based on these elements, this review makes current and future recommendations for effective gamification, such as the use of virtual reality and adaptation of game difficulty to user skill level.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Functional Electrical Stimulation Controlled by Motor Imagery Brain-Computer Interface for Rehabilitation
    Choi, Inchul
    Kwon, Gyu Hyun
    Lee, Sangwon
    Nam, Chang S.
    BRAIN SCIENCES, 2020, 10 (08) : 1 - 26
  • [32] Effects of Task Complexity on Motor Imagery-Based Brain-Computer Interface
    Mashat, M. Ebrahim M.
    Lin, Chin-Teng
    Zhang, Dingguo
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (10) : 2178 - 2185
  • [33] Novel hybrid brain-computer interface system based on motor imagery and P300
    Zuo, Cili
    Jin, Jing
    Yin, Erwei
    Saab, Rami
    Miao, Yangyang
    Wang, Xingyu
    Hu, Dewen
    Cichocki, Andrzej
    COGNITIVE NEURODYNAMICS, 2020, 14 (02) : 253 - 265
  • [34] Multimodal feedback in assisting a wearable brain-computer interface based on motor imagery
    Arpaia, Pasquale
    Coyle, Damien
    Donnarumma, Francesco
    Esposito, Antonio
    Natalizio, Angela
    Parvis, Marco
    Pesola, Marisa
    Vallefuoco, Ersilia
    2022 IEEE INTERNATIONAL CONFERENCE ON METROLOGY FOR EXTENDED REALITY, ARTIFICIAL INTELLIGENCE AND NEURAL ENGINEERING (METROXRAINE), 2022, : 691 - 696
  • [35] Signal processing algorithms for motor imagery brain-computer interface:State of the art
    Hong, Jie
    Qin, Xiansheng
    Li, Jing
    Niu, Junlong
    Wang, Wenjie
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (06) : 6405 - 6419
  • [36] Review of public motor imagery and execution datasets in brain-computer interfaces
    Gwon, Daeun
    Won, Kyungho
    Song, Minseok
    Nam, Chang S.
    Jun, Sung Chan
    Ahn, Minkyu
    FRONTIERS IN HUMAN NEUROSCIENCE, 2023, 17
  • [37] Brain-Computer Interface Review
    Bularka, Szilrd
    Gontean, Aurel
    2016 12TH IEEE INTERNATIONAL SYMPOSIUM ON ELECTRONICS AND TELECOMMUNICATIONS (ISETC'16), 2016, : 219 - 222
  • [38] Improvement of brain-computer interface in motor imagery training through the designing of a dynamic experiment and FBCSP
    Lin, Chun-Ling
    Chen, Liang-Ting
    HELIYON, 2023, 9 (03)
  • [39] Emotion-Inducing Imagery Versus Motor Imagery for a Brain-Computer Interface
    Bigirimana, A. D.
    Siddique, N.
    Coyle, D.
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2020, 28 (04) : 850 - 859
  • [40] Neurophysiological substrates of stroke patients with motor imagery-based brain-computer interface training
    Li, Mingfen
    Liu, Ye
    Wu, Yi
    Liu, Sirao
    Jia, Jie
    Zhang, Liqing
    INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2014, 124 (06) : 403 - 415