Optimizing 3D Clothing Models for VR: A Deep Learning Approach to Triangle Count Reduction

被引:0
|
作者
Doungtap, Surasachai [1 ]
Phanichraksaphong, Varinya [1 ]
Wang, Jenq-Haur [2 ]
机构
[1] Natl Taipei Univ Technol, Int Grad Program Elect Engn & Comp Sci, Taipei 10608, Taiwan
[2] Natl Taipei Univ Technol, Dept Comp Sci & Informat Engn, Taipei 10608, Taiwan
来源
2024 11TH INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-TAIWAN, ICCE-TAIWAN 2024 | 2024年
关键词
3D Reconstruction; Deep Learning; Topology Optimization; Virtual Reality; Triangle Count Reduction;
D O I
10.1109/ICCE-Taiwan62264.2024.10674064
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study presents a deep learning framework optimizing 3D clothing models for VR, using a CNN to significantly reduce the triangle count of models from DeepFashion3D and CAP-UDF datasets. Achieving a balance between efficiency and detail, it cuts triangle count from over 160,000 to below 4,000, maintaining high DPI. The approach automates optimization, promising scalability and efficiency in VR fashion, setting a foundation for future 3D content development, enhancing virtual garment realism and interactivity.
引用
收藏
页码:733 / 734
页数:2
相关论文
共 50 条
  • [41] Reconstruction of design history of 3D CAD models using deep learning: research trends
    Byung Chul Kim
    JMST Advances, 2023, 5 (4) : 113 - 119
  • [42] Convolutional deep learning for 3D object retrieval
    Weizhi Nie
    Qun Cao
    Anan Liu
    Yuting Su
    Multimedia Systems, 2017, 23 : 325 - 332
  • [43] EdgeNet: Deep metric learning for 3D shapes
    Chen, Mingjia
    Zou, Qianfang
    Wang, Changbo
    Liu, Ligang
    COMPUTER AIDED GEOMETRIC DESIGN, 2019, 72 : 19 - 33
  • [44] Deep imitation learning for 3D navigation tasks
    Ahmed Hussein
    Eyad Elyan
    Mohamed Medhat Gaber
    Chrisina Jayne
    Neural Computing and Applications, 2018, 29 : 389 - 404
  • [45] Deep Learning for 3D Point Clouds: A Survey
    Guo, Yulan
    Wang, Hanyun
    Hu, Qingyong
    Liu, Hao
    Liu, Li
    Bennamoun, Mohammed
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (12) : 4338 - 4364
  • [46] Deep imitation learning for 3D navigation tasks
    Hussein, Ahmed
    Elyan, Eyad
    Gaber, Mohamed Medhat
    Jayne, Chrisina
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (07) : 389 - 404
  • [47] Review: Deep Learning on 3D Point Clouds
    Bello, Saifullahi Aminu
    Yu, Shangshu
    Wang, Cheng
    Adam, Jibril Muhmmad
    Li, Jonathan
    REMOTE SENSING, 2020, 12 (11)
  • [48] A Survey of Robustness and Safety of 2D and 3D Deep Learning Models against Adversarial Attacks
    Li, Yanjie
    Xie, Bin
    Guo, Songtao
    Yang, Yuanyuan
    Xiao, Bin
    ACM COMPUTING SURVEYS, 2024, 56 (06)
  • [49] 3D Face Recognition Based on Deep Learning
    Luo, Jing
    Hu, Fei
    Wang, Ruihuan
    2019 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), 2019, : 1576 - 1581
  • [50] 3D Nuclei Segmentation through Deep Learning
    Rojas, Roberto
    Navarro, Carlos F.
    Orellana, Gabriel A.
    Lemus, Carmen Gloria C.
    Castaneda, Victor
    2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI, 2023, : 309 - 310