Optimizing 3D Clothing Models for VR: A Deep Learning Approach to Triangle Count Reduction

被引:0
|
作者
Doungtap, Surasachai [1 ]
Phanichraksaphong, Varinya [1 ]
Wang, Jenq-Haur [2 ]
机构
[1] Natl Taipei Univ Technol, Int Grad Program Elect Engn & Comp Sci, Taipei 10608, Taiwan
[2] Natl Taipei Univ Technol, Dept Comp Sci & Informat Engn, Taipei 10608, Taiwan
来源
2024 11TH INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-TAIWAN, ICCE-TAIWAN 2024 | 2024年
关键词
3D Reconstruction; Deep Learning; Topology Optimization; Virtual Reality; Triangle Count Reduction;
D O I
10.1109/ICCE-Taiwan62264.2024.10674064
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study presents a deep learning framework optimizing 3D clothing models for VR, using a CNN to significantly reduce the triangle count of models from DeepFashion3D and CAP-UDF datasets. Achieving a balance between efficiency and detail, it cuts triangle count from over 160,000 to below 4,000, maintaining high DPI. The approach automates optimization, promising scalability and efficiency in VR fashion, setting a foundation for future 3D content development, enhancing virtual garment realism and interactivity.
引用
收藏
页码:733 / 734
页数:2
相关论文
共 50 条
  • [31] A Deep Learning-Based Method to Detect Components from Scanned Structural Drawings for Reconstructing 3D Models
    Zhao, Yunfan
    Deng, Xueyuan
    Lai, Huahui
    APPLIED SCIENCES-BASEL, 2020, 10 (06):
  • [32] 3D and VR models in Civil Engineering education: Construction, rehabilitation and maintenance
    Sampaio, Alcinia Z.
    Ferreira, Miguel M.
    Rosario, Daniel P.
    Martins, Octavio P.
    AUTOMATION IN CONSTRUCTION, 2010, 19 (07) : 819 - 828
  • [33] Role of Simulated Lidar Data for Training 3D Deep Learning Models: An Exhaustive Analysis
    Lohani, Bharat
    Khan, Parvej
    Kumar, Vaibhav
    Gupta, Siddhartha
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2024, 52 (09) : 2003 - 2019
  • [34] Deep Learning-based Detection of Anthropometric Landmarks in 3D Infants Head Models
    Torres, Helena R.
    Oliveira, Bruno
    Veloso, Fernando
    Ruediger, Mario
    Burkhardt, Wolfram
    Moreira, Antonio
    Dias, Nuno
    Morais, Pedro
    Fonseca, Jaime C.
    Vilaca, Joao L.
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [35] Discrimination of structures in plant using deep learning models trained by 3D CAD semantics
    Takashi Imabuchi
    Kuniaki Kawabata
    Artificial Life and Robotics, 2025, 30 (1) : 184 - 195
  • [36] Automatic Segmentation and Scoring of 3D in Vitro Skin Models Using Deep Learning Methods
    Hertlein, Anna-Sophia
    Wussmann, Maximiliane
    Boche, Benjamin
    Pracht, Felix
    Holzer, Siegfried
    Groeber-Becker, Florian
    Wesarg, Stefan
    DIGITAL AND COMPUTATIONAL PATHOLOGY, MEDICAL IMAGING 2024, 2024, 12933
  • [37] Deep learning-based framework for Shape Instance Registration on 3D CAD models
    Figueiredo, Lucas
    Ivson, Paulo
    Celes, Waldemar
    COMPUTERS & GRAPHICS-UK, 2021, 101 : 72 - 81
  • [38] Spatio-temporal deep learning models of 3D turbulence with physics informed diagnostics
    Mohan, Arvind T.
    Tretiak, Dima
    Chertkov, Misha
    Livescu, Daniel
    JOURNAL OF TURBULENCE, 2020, 21 (9-10): : 484 - 524
  • [39] Beyond Nyquist: A Comparative Analysis of 3D Deep Learning Models Enhancing MRI Resolution
    Chatterjee, Soumick
    Sciarra, Alessandro
    Duennwald, Max
    Ashoka, Anitha Bhat Talagini
    Vasudeva, Mayura Gurjar Cheepinahalli
    Saravanan, Shudarsan
    Sambandham, Venkatesh Thirugnana
    Tummala, Pavan
    Oeltze-Jafra, Steffen
    Speck, Oliver
    Nuernberger, Andreas
    JOURNAL OF IMAGING, 2024, 10 (09)
  • [40] Bridging Formal Shape Models and Deep Learning: A Novel Fusion for Understanding 3D Objects
    Zhang, Jincheng
    Willis, Andrew R.
    SENSORS, 2024, 24 (12)