Optimizing 3D Clothing Models for VR: A Deep Learning Approach to Triangle Count Reduction

被引:0
|
作者
Doungtap, Surasachai [1 ]
Phanichraksaphong, Varinya [1 ]
Wang, Jenq-Haur [2 ]
机构
[1] Natl Taipei Univ Technol, Int Grad Program Elect Engn & Comp Sci, Taipei 10608, Taiwan
[2] Natl Taipei Univ Technol, Dept Comp Sci & Informat Engn, Taipei 10608, Taiwan
来源
2024 11TH INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-TAIWAN, ICCE-TAIWAN 2024 | 2024年
关键词
3D Reconstruction; Deep Learning; Topology Optimization; Virtual Reality; Triangle Count Reduction;
D O I
10.1109/ICCE-Taiwan62264.2024.10674064
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study presents a deep learning framework optimizing 3D clothing models for VR, using a CNN to significantly reduce the triangle count of models from DeepFashion3D and CAP-UDF datasets. Achieving a balance between efficiency and detail, it cuts triangle count from over 160,000 to below 4,000, maintaining high DPI. The approach automates optimization, promising scalability and efficiency in VR fashion, setting a foundation for future 3D content development, enhancing virtual garment realism and interactivity.
引用
收藏
页码:733 / 734
页数:2
相关论文
共 50 条
  • [1] Tangible Organs - Introducing 3D Printed Organ Models with VR to Interact with Medical 3D Models
    Reinschluessel, Anke, V
    Muender, Thomas
    Uslar, Verena
    Weyhe, Dirk
    Schenk, Andrea
    Malaka, Rainer
    CHI EA '19 EXTENDED ABSTRACTS: EXTENDED ABSTRACTS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, 2019,
  • [2] DEEP LEARNING FOR 3D BUILDING RECONSTRUCTION: A REVIEW
    Buyukdemircioglu, Mehmet
    Kocaman, Sultan
    Kada, Martin
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 43-B2 : 359 - 366
  • [3] A deep learning approach for predicting the architecture of 3D textile fabrics
    Koptelov, Anatoly
    Thompson, Adam
    Hallett, Stephen R.
    El Said, Bassam
    MATERIALS & DESIGN, 2024, 239
  • [4] Deep Learning for Quality Control of Subcortical Brain 3D Shape Models
    Petrov, Dmitry
    Gutman, Boris A.
    Kuznetsov, Egor
    Ching, Christopher R. K.
    Alpert, Kathryn
    Zavaliangos-Petropulu, Artemis
    Isaev, Dmitry
    Turner, Jessica A.
    Van Erp, Theo G. M.
    Wang, Lei
    Schmaal, Lianne
    Veltman, Dick
    Thompson, Paul M.
    SHAPE IN MEDICAL IMAGING, SHAPEMI 2018, 2018, 11167 : 268 - 276
  • [5] GENERALIZATION PROPERTIES OF GEOMETRIC 3D DEEP LEARNING MODELS FOR MEDICAL SEGMENTATION
    Lebrat, Leo
    Cruz, Rodrigo Santa
    Dorent, Reuben
    Yaksic, Javier Urriola
    Pagnozzi, Alex
    Belous, Gregg
    Bourgeat, Pierrick
    Fripp, Jurgen
    Fookes, Clinton
    Salvado, Olivier
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [6] COMBINING VISIBILITY ANALYSIS AND DEEP LEARNING FOR REFINEMENT OF SEMANTIC 3D BUILDING MODELS BY CONFLICT CLASSIFICATION
    Wysocki, O.
    Grilli, E.
    Hoegner, L.
    Stilla, U.
    17TH 3D GEOINFO CONFERENCE, 2022, 10-4 (W2): : 289 - 296
  • [7] A Deep Learning Architecture for 3D Mapping Urban Landscapes
    Rodriguez-Santiago, Armando Levid
    Arias-Aguilar, Jose Anibal
    Takemura, Hiroshi
    Petrilli-Barcelo, Alberto Elias
    APPLIED SCIENCES-BASEL, 2021, 11 (23):
  • [8] DETECTION OF SINGULARITIES IN FINITE ELEMENT SIMULATIONS: A 3D DEEP LEARNING APPROACH
    Bickel, Sebastian
    Goetz, Stefan
    Wartzack, Sandro
    PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 2, 2023,
  • [9] Liver Tumors Segmentation Using 3D SegNet Deep Learning Approach
    Nallasivan G.
    Ramachandran V.
    Alroobaea R.
    Almotiri J.
    Computer Systems Science and Engineering, 2023, 45 (02): : 1655 - 1677
  • [10] Improved Lightweight Deep Learning Algorithm in 3D Reconstruction
    Zhang, Tao
    Cao, Yi
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (03): : 5315 - 5325