Dynamic changes in seed nutritional components of mung bean [(Vigna radiata (L.) R. Wilczek)] under heat stress

被引:0
|
作者
Uday Chand Jha [1 ]
Sadiah Shafi [2 ]
Shyam Tallury [2 ]
Harsh Nayyar [3 ]
Ashis Ranjan Udgata [4 ]
Ignacio A. Ciampitti [1 ]
Kadambot H. M. Siddique [5 ]
P. V. Vara Prasad [6 ]
机构
[1] Indian Council for Agricultural Research (ICAR) - Indian Institute of Pulses Research (IIPR),Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification
[2] Kansas State University,Department of Botany
[3] Plant Genetic Resources Conservation Unit in Griffin,Department of Agronomy
[4] Panjab University,Department of Agronomy
[5] Kansas State University,The UWA Institute of Agriculture
[6] Purdue University,undefined
[7] The University of Western Australia,undefined
关键词
Mung bean; Heat stress; Macronutrients; Micronutrient; Genotype;
D O I
10.1038/s41598-025-93992-5
中图分类号
学科分类号
摘要
The increasing challenges of high-temperature (heat stress) significantly impact plant growth and crop yield, including mung bean [(Vigna radiata (L.) R. Wilczek]. Simultaneously, seed quality, encompassing various seed nutrition components, is adversely affected by heat stress. To examine the impact of heat stress, we investigated the seed nutritional profiling of ten selected diverse mung bean genotypes for seed compounds (all expressed in concentration), protein, carbon (C), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and micronutrients, with main focused on seed iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), and sulfur (S), under both control and heat stress conditions. All seed nutrient components, except seed protein, decreased under heat stress relative to the control. Furthermore, to gain insights into the genotype (G) × temperature (T) effect, the combined analysis of variance revealed a significant G × T effect for all assessed traits, except for seed P, Fe and Cu concentrations. Association analysis of seed components revealed a significant and positive correlation between seed P and protein concentrations under heat stress. Likewise, high and significant associations were observed between seed Ca with S and S with P concentrations under heat stress. However, under the control, seed C and protein, Fe and C, and seed yield per plant (SYP) and Zn all exhibited high and significant negative correlations. Under heat stress, positive and significant associations were observed, including seed protein and P, P and Mg, P and Fe, and S and Mg concentrations. Conversely, significant negative associations were observed between seed Cu and Ca, Cu and Mg, and SYP with seed C and P concentrations. Heat stress adversely affected seed nutritional and yield traits in mung bean.
引用
收藏
相关论文
共 50 条
  • [1] YIELD COMPONENTS IN MUNG BEAN [Vigna radiata (L.) Wilczek]
    Canci, Huseyin
    Toker, Cengiz
    TURKISH JOURNAL OF FIELD CROPS, 2014, 19 (02) : 258 - 261
  • [2] Physiological Basis and Mitigation Strategies for Improving Tolerance to Heat Stress in Mung bean [Vigna radiata (L.) R. Wilczek]
    Mitra, R.
    Kumar, P.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2024, 71 (06)
  • [3] Physiochemical Changes of Mung Bean [Vigna radiata (L.) R. Wilczek] in Responses to Varying Irrigation Regimes
    Islam, Mohammad Rafiqul
    Kamal, Mohd. Mostofa
    Alam, Mohammad Ashraful
    Hossain, Jamil
    Soufan, Walid
    Skalicky, Milan
    Brestic, Marian
    Habib-ur-Rahman, Muhammad
    EL Sabagh, Ayman
    Islam, Mohammad Sohidul
    HORTICULTURAE, 2021, 7 (12)
  • [4] Selection Indices for Yield Components in Mung Bean (Vigna radiata (L.) R. Wilczek) during Summer Season
    Indu
    Niyaria, R.
    Raghuwanshi, S. S.
    Saxena, A.
    JOURNAL OF PURE AND APPLIED MICROBIOLOGY, 2016, 10 (04): : 2937 - 2941
  • [5] STABILITY ANALYSIS IN MUNG BEAN [VIGNA RADIATA (L) WILCZEK] FOR NUTRITIONAL QUALITY AND SEED YIELD
    Singh, Vijayata
    Yadav, Ram Kumar
    Yadav, Rajesh
    Malik, R. S.
    Yadav, Neelam R.
    Singh, Jogendra
    LEGUME RESEARCH, 2013, 36 (01) : 56 - 61
  • [6] Linking changes in chlorophyll a fluorescence with drought stress susceptibility in mung bean [Vigna radiata (L.) Wilczek]
    Bano, Hussan
    Athar, Habib-ur-Rehman
    Zafar, Zafar Ullah
    Kalaji, Hazem M.
    Ashraf, Muhammad
    PHYSIOLOGIA PLANTARUM, 2021, 172 (02) : 1244 - 1254
  • [7] Systematic study on the effect of seaweed fertilizer on the growth and yield of Vigna radiata (L.) R. Wilczek (Mung bean)
    Karthik, T.
    Jayasri, M. A.
    JOURNAL OF AGRICULTURE AND FOOD RESEARCH, 2023, 14
  • [8] Plant growth promoting rhizobacteria and their biopriming for growth promotion in mung bean (Vigna radiata (L.) R. Wilczek)
    Kumari, Punam
    Meena, Mukesh
    Gupta, Pooja
    Dubey, Manish Kumar
    Nath, Gopal
    Upadhyay, R. S.
    BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 2018, 16 : 163 - 171
  • [9] Extraction, purification and properties of trypsin inhibitor from Thai mung bean (Vigna radiata (L.) R. Wilczek)
    Klomklao, Sappasith
    Benjakul, Soottawat
    Kishimura, Hideki
    Chaijan, Manat
    FOOD CHEMISTRY, 2011, 129 (04) : 1348 - 1354
  • [10] Variation for hardseededness and related seed physical parameters in mung bean [Vigna radiata (L.) Wilczek]
    Paul, Debashis
    Chakrabarty, S. K.
    Dikshit, H. K.
    Singh, Y.
    INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 2018, 78 (03) : 333 - 341