Predicting the risk of heart failure after acute myocardial infarction using an interpretable machine learning model

被引:0
|
作者
Lin, Qingqing [1 ,2 ]
Zhao, Wenxiang [2 ,3 ]
Zhang, Hailin [2 ,3 ]
Chen, Wenhao [4 ]
Lian, Sheng [4 ]
Ruan, Qinyun [1 ,2 ]
Qu, Zhaoyang [1 ,2 ]
Lin, Yimin [1 ,2 ]
Chai, Dajun [2 ,3 ,5 ,6 ]
Lin, Xiaoyan [1 ,2 ,5 ,6 ]
机构
[1] Fujian Med Univ, Affiliated Hosp 1, Dept Ultrasound, Fuzhou, Peoples R China
[2] Fujian Med Univ, Affiliated Hosp 1, Natl Reg Med Ctr, Binhai Branch, Fuzhou, Peoples R China
[3] Fujian Med Univ, Affiliated Hosp 1, Dept Cardiol, Fuzhou, Peoples R China
[4] Fuzhou Univ, Coll Comp & Data Sci, Fujian Key Lab Network Comp & Intelligent Informat, Fuzhou, Peoples R China
[5] Key Lab Metab Cardiovasc Dis Fujian Prov Coll & Un, Fuzhou, Peoples R China
[6] Clin Res Ctr Metab Heart Dis Fujian Prov, Fuzhou, Peoples R China
来源
FRONTIERS IN CARDIOVASCULAR MEDICINE | 2025年 / 12卷
关键词
acute myocardial infarction; heart failure; machine learning; predict; shapley additive explanations; ST-SEGMENT ELEVATION; CARDIOVASCULAR-DISEASE;
D O I
10.3389/fcvm.2025.1444323
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Early prediction of heart failure (HF) after acute myocardial infarction (AMI) is essential for personalized treatment. We aimed to use interpretable machine learning (ML) methods to develop a risk prediction model for HF in AMI patients.Methods We retrospectively included patients initially with AMI who received percutaneous coronary intervention (PCI) in our hospital from November 2016 to February 2020. The primary endpoint was the occurrence of HF within 3 years after operation. For developing a predictive model for HF risk in AMI patients, the least absolute shrinkage and selection operator (LASSO) Regression was used to feature selection, and four ML algorithms including Random Forest (RF), Extreme Gradient Boost (XGBoost), Support Vector Machine (SVM), and Logistic Regression (LR) were employed to develop the model on the training set. The performance evaluation of the prediction model was carried out on the training set and the testing set, utilizing metrics including AUC (Area under the receiver operating characteristic curve), calibration plot, and decision curve analysis (DCA). In addition, we used the Shapley Additive Explanations (SHAP) value to determine the importance of the selected features and interpret the optimal model.Results A total of 1220 AMI patients were included and 244 (20%) patients developed HF during follow-up. Among the four evaluated ML models, the XGBoost model exhibited exceptional accuracy, with an AUC value of 0.922. The SHAP method showed that left ventricular ejection fraction (LVEF), left ventricular end-systolic diameter (LVDs) and lactate dehydrogenase (LDH) were identified as the three most important characteristics to predict HF risk in AMI patients. Individual risk assessment was performed using SHAP plots and waterfall plot analysis.Conclusions Our research demonstrates the potential of ML methods in the early prediction of HF risk in AMI patients. Furthermore, it enhances the interpretability of the XGBoost model through SHAP analysis to guide clinical decision-making.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A Machine Learning Model for the Prediction of No-Reflow Phenomenon in Acute Myocardial Infarction Using the CALLY Index
    Fedai, Halil
    Sariisik, Gencay
    Toprak, Kenan
    Tascanov, Mustafa Begenc
    Efe, Muhammet Mucip
    Arga, Yakup
    Doganogullari, Salih
    Gez, Sedat
    Demirbag, Recep
    DIAGNOSTICS, 2024, 14 (24)
  • [32] Predicting In-Hospital Mortality in Patients With Acute Myocardial Infarction: A Comparison of Machine Learning Approaches
    Soleimani, Hamidreza
    Najdaghi, Soroush
    Davani, Delaram Narimani
    Dastjerdi, Parham
    Samimisedeh, Parham
    Shayesteh, Hedieh
    Sattartabar, Babak
    Masoudkabir, Farzad
    Ashraf, Haleh
    Mehrani, Mehdi
    Jenab, Yaser
    Hosseini, Kaveh
    CLINICAL CARDIOLOGY, 2025, 48 (04)
  • [33] Comparison of machine learning and the regression-based EHMRG model for predicting early mortality in acute heart failure
    Austin, David E.
    Lee, Douglas S.
    Wang, Chloe X.
    Ma, Shihao
    Wang, Xuesong
    Porter, Joan
    Wang, Bo
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2022, 365 : 78 - 84
  • [34] Weight and weight change and risk of acute myocardial infarction and heart failure - the HUNT Study
    Janszky, I.
    Romundstad, P.
    Laugsand, L. E.
    Vatten, L. J.
    Mukamal, K. J.
    Morkedal, B.
    JOURNAL OF INTERNAL MEDICINE, 2016, 280 (03) : 312 - 322
  • [35] An Efficient Machine Learning Model for Prediction of Acute Myocardial Infarction
    Dhilsath F.M.
    Samuel S.J.
    Hariharan R.
    Recent Advances in Computer Science and Communications, 2021, 14 (07): : 2360 - 2368
  • [36] Machine learning prediction of mortality in Acute Myocardial Infarction
    Oliveira, Mariana
    Seringa, Joana
    Pinto, Fausto Jose
    Henriques, Roberto
    Magalhaes, Teresa
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [37] Predicting in-hospital all-cause mortality in heart failure using machine learning
    Mpanya, Dineo
    Celik, Turgay
    Klug, Eric
    Ntsinjana, Hopewell
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2023, 9
  • [38] Predicting geogenic groundwater arsenic contamination risk in floodplains using interpretable machine-learning model
    Fan, Ruiyu
    Deng, Yamin
    Du, Yao
    Xie, Xianjun
    ENVIRONMENTAL POLLUTION, 2024, 340
  • [39] Using a machine learning model to predict the development of acute kidney injury in patients with heart failure
    Liu, Wen Tao
    Liu, Xiao Qi
    Jiang, Ting Ting
    Wang, Meng Ying
    Huang, Yang
    Huang, Yu Lin
    Jin, Feng Yong
    Zhao, Qing
    Wu, Qin Yi
    Liu, Bi Cheng
    Ruan, Xiong Zhong
    Ma, Kun Ling
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [40] lncRNA-NRF is a Potential Biomarker of Heart Failure After Acute Myocardial Infarction
    Li Yan
    Yu Zhang
    Wei Zhang
    Sheng-Qiong Deng
    Zhi-Ru Ge
    Journal of Cardiovascular Translational Research, 2020, 13 : 1008 - 1015