Learning to Train and to Explain a Deep Survival Model with Large-Scale Ovarian Cancer Transcriptomic Data

被引:0
作者
Menand, Elena Spirina [1 ,2 ]
De Vries-Brilland, Manon [2 ,3 ]
Tessier, Leslie [2 ]
Dauve, Jonathan [2 ]
Campone, Mario [4 ,5 ]
Verriele, Veronique [6 ]
Jrad, Nisrine [1 ]
Marion, Jean-Marie [1 ]
Chauvet, Pierre [1 ]
Passot, Christophe [2 ]
Morel, Alain [2 ,5 ]
机构
[1] Univ Angers, Lab Angevin Rech Ingn Syst EA7315, F-49035 Angers, France
[2] Inst Cancerol Ouest Nantes Angers, Unite Genom Fonct, F-49055 Angers, France
[3] Inst Cancerol Ouest Nantes Angers, F-49000 Angers, France
[4] Inst Cancerol Ouest Nantes Angers, F-49000 Angers, France
[5] Nantes Univ, Univ Angers, CNRS, Inserm,CRCI2NA,SFR ICAT, F-49000 Angers, France
[6] Inst Cancerol Ouest Nantes Angers, Dept Anat & Cytol Pathol, F-49055 Angers, France
关键词
TCGA; ovarian cancer; RNA-seq; survival analysis; deep learning; molecular pathways; SIGNATURES;
D O I
10.3390/biomedicines12122881
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background/Objectives: Ovarian cancer is a complex disease with poor outcomes that affects women worldwide. The lack of successful therapeutic options for this malignancy has led to the need to identify novel biomarkers for patient stratification. Here, we aim to develop the outcome predictors based on the gene expression data as they may serve to identify categories of patients who are more likely to respond to certain therapies. Methods: We used The Cancer Genome Atlas (TCGA) ovarian cancer transcriptomic data from 372 patients and approximately 16,600 genes to train and evaluate the deep learning survival models. In addition, we collected an in-house validation dataset of 12 patients to assess the performance of the trained survival models for their direct use in clinical practice. Despite deceptive generalization capabilities, we demonstrated how our model can be interpreted to uncover biological processes associated with survival. We calculated the contributions of the input genes to the output of the best trained model and derived the corresponding molecular pathways. Results: These pathways allowed us to stratify the TCGA patients into high-risk and low-risk groups (p-value 0.025). We validated the stratification ability of the identified pathways on the in-house dataset consisting of 12 patients (p-value 0.229) and on the external clinical and molecular dataset consisting of 274 patients (p-value 0.006). Conclusions: The deep learning-based models for survival prediction with RNA-seq data could be used to detect and interpret the gene-sets associated with survival in ovarian cancer patients and open a new avenue for future research.
引用
收藏
页数:16
相关论文
共 52 条
[41]   Prognostic relevance of HRDness gene expression signature in ovarian high-grade serous carcinoma; JGOG3025-TR2 study [J].
Takamatsu, Shiro ;
Yoshihara, Kosuke ;
Baba, Tsukasa ;
Shimada, Muneaki ;
Yoshida, Hiroshi ;
Kajiyama, Hiroaki ;
Oda, Katsutoshi ;
Mandai, Masaki ;
Okamoto, Aikou ;
Enomoto, Takayuki ;
Matsumura, Noriomi .
BRITISH JOURNAL OF CANCER, 2023, 128 (06) :1095-1104
[42]   The Role of PARP Inhibitors in the Ovarian Cancer Microenvironment: Moving Forward From Synthetic Lethality [J].
Turinetto, Margherita ;
Scotto, Giulia ;
Tuninetti, Valentina ;
Giannone, Gaia ;
Valabrega, Giorgio .
FRONTIERS IN ONCOLOGY, 2021, 11
[43]   The effectiveness of monotherapy with PI3K/AKT/mTOR pathway inhibitors in ovarian cancer: A meta-analysis [J].
van der Ploeg, Phyllis ;
Uittenboogaard, Aniek ;
Thijs, Anna M. J. ;
Westgeest, Hans M. ;
Boere, Ingrid A. ;
Lambrechts, Sandrina ;
van de Stolpe, Anja ;
Bekkers, Ruud L. M. ;
Piek, Jurgen M. J. .
GYNECOLOGIC ONCOLOGY, 2021, 163 (02) :433-444
[44]  
Vaswani A, 2023, Arxiv, DOI [arXiv:1706.03762, DOI 10.48550/ARXIV.1706.03762, 10.48550/arXiv.1706.03762]
[45]   Prognostically relevant gene signatures of high-grade serous ovarian carcinoma [J].
Verhaak, Roel G. W. ;
Tamayo, Pablo ;
Yang, Ji-Yeon ;
Hubbard, Diana ;
Zhang, Hailei ;
Creighton, Chad J. ;
Fereday, Sian ;
Lawrence, Michael ;
Carter, Scott L. ;
Mermel, Craig H. ;
Kostic, Aleksandar D. ;
Etemadmoghadam, Dariush ;
Saksena, Gordon ;
Cibulskis, Kristian ;
Duraisamy, Sekhar ;
Levanon, Keren ;
Sougnez, Carrie ;
Tsherniak, Aviad ;
Gomez, Sebastian ;
Onofrio, Robert ;
Gabriel, Stacey ;
Chin, Lynda ;
Zhang, Nianxiang ;
Spellman, Paul T. ;
Zhang, Yiqun ;
Akbani, Rehan ;
Hoadley, Katherine A. ;
Kahn, Ari ;
Koebel, Martin ;
Huntsman, David ;
Soslow, Robert A. ;
Defazio, Anna ;
Birrer, Michael J. ;
Gray, Joe W. ;
Weinstein, John N. ;
Bowtell, David D. ;
Drapkin, Ronny ;
Mesirov, Jill P. ;
Getz, Gad ;
Levine, Douglas A. ;
Meyerson, Matthew .
JOURNAL OF CLINICAL INVESTIGATION, 2013, 123 (01) :517-525
[46]  
Way GP, 2018, BIOCOMPUT-PAC SYM, P80
[47]   clusterProfiler 4.0: A universal enrichment tool for interpreting omics data [J].
Wu, Tianzhi ;
Hu, Erqiang ;
Xu, Shuangbin ;
Chen, Meijun ;
Guo, Pingfan ;
Dai, Zehan ;
Feng, Tingze ;
Zhou, Lang ;
Tang, Wenli ;
Zhan, Li ;
Fu, Xiaocong ;
Liu, Shanshan ;
Bo, Xiaochen ;
Yu, Guangchuang .
INNOVATION, 2021, 2 (03)
[48]   Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models [J].
Yousefi, Safoora ;
Amrollahi, Fatemeh ;
Amgad, Mohamed ;
Dong, Chengliang ;
Lewis, Joshua E. ;
Song, Congzheng ;
Gutman, David A. ;
Halani, Sameer H. ;
Vega, Jose Enrique Velazquez ;
Brat, Daniel J. ;
Cooper, Lee A. D. .
SCIENTIFIC REPORTS, 2017, 7
[49]  
Yu C.N., 2011, Adv. Neural Inf. Process. Syst, V24, P10
[50]   ComBat-seq: batch effect adjustment for RNA-seq count data [J].
Zhang, Yuqing ;
Parmigiani, Giovanni ;
Johnson, W. Evan .
NAR GENOMICS AND BIOINFORMATICS, 2020, 2 (03)