Influence of implantation temperature and He implantation-induced defects on morphological evolution of co-deposited Cu-Mo nanocomposites

被引:0
作者
Yadav, Digvijay [1 ]
Derby, Benjamin K. [2 ]
Powers, Max [3 ]
Baldwin, Jon Kevin [2 ]
Wang, Yongqiang [4 ]
Misra, Amit [3 ]
Xie, Kelvin Y. [1 ]
Demkowicz, Michael J. [1 ]
机构
[1] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77840 USA
[2] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
[3] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[4] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA
基金
美国能源部;
关键词
Helium bubble; Coarsening; Co-deposited metal nanocomposite; Implantation; Copper; Molybdenum; GRAIN-GROWTH; HELIUM BUBBLE; IRRADIATION; NANOCRYSTALLINE; ALLOYS; METALS;
D O I
10.1016/j.jnucmat.2025.155645
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the effect of high-temperature helium (He) implantation on microstructural evolution in physicalvapor-co-deposited nanocomposite thin films of copper (Cu) and molybdenum (Mo). The microstructure morphologies of He-implanted and He-free domains are characterized using transmission electron microscopy and statistical analysis. High implantation temperatures (500 degrees C and 750 degrees C) lead to coarsening of Cu and Mo domains and their eventual reorientation. The microstructure evolution in He-implanted and He-free domains is comparable, indicating that implantation-induced defects do not accelerate the coarsening of the nanocomposite as compared to annealing alone. This observation contrasts with previously reported effects of implantationinduced defects on single-phase nanocrystalline metals, which include enhancement of grain growth by increasing self-diffusivity or its inhibition by pinning of grain boundaries.
引用
收藏
页数:8
相关论文
共 51 条
  • [1] Zinkle S.J., Was G.S., Materials challenges in nuclear energy, Acta Mater., 61, 3, pp. 735-758, (2013)
  • [2] Mansur L.K., Void swelling in metals and alloys under irradiation: an assessment of the theory, Nucl. Technol., 40, 1, pp. 5-34, (1978)
  • [3] Odette G.R., Lucas G.E., Embrittlement of nuclear reactor pressure vessels, Jom-J. Min. Met. Mat. S, 53, 7, pp. 18-22, (2001)
  • [4] Zhou R.S., West E.A., Jiao Z.J., Was G.S., Irradiation-assisted stress corrosion cracking of austenitic alloys in supercritical water, J. Nucl. Mater., 395, 1-3, pp. 11-22, (2009)
  • [5] Beierschmitt K., Basic research needs for future nuclear energy, (2017)
  • [6] Suresh K., Nagini M., Vijay R., Ramakrishna M., Gundakaram R.C., Reddy A.V., Sundararajan G., Microstructural studies of oxide dispersion strengthened austenitic steels, Mater. Des., 110, pp. 519-525, (2016)
  • [7] Zhang X., Wen J.G., Bellon P., Averback R.S., Irradiation-induced selective precipitation in Cu-Nb-W alloys: an approach towards coarsening resistance, Acta Mater., 61, 6, pp. 2004-2015, (2013)
  • [8] Xiang S., McCue I., Yadav D., Wang Y., Baldwin J.K., Demkowicz M.J., Xie K.Y., Comparative study of helium bubbles in a Ti-Ta alloy and a Ti/Ta nanocomposite, Philos. Mag. Lett., 100, 7, pp. 307-318, (2020)
  • [9] Fan Z., Fan C.C., Li J., Shang Z.X., Xue S.C., Kirk M.A., Li M.M., Wang H.Y., Zhang X.H., An in situ study on Kr ion-irradiated crystalline Cu/amorphous-CuNb nanolaminates, J. Mater. Res., 34, 13, pp. 2218-2228, (2019)
  • [10] Gomes D.R., Turkin A.A., Vainchtein D.I., De Hosson J.T.M., Bending of nanoporous thin films under ion radiation, Thin. Solid. Films., 688, (2019)