Alzheimer's disease (AD) is an insidious, irreversible, complex neurodegenerative disorder characterized by progressive cognitive decline and memory loss; affecting millions worldwide. Despite decades of research, no effective disease-modifying treatment exists. However, drug repurposing is a progressive step in identifying new therapeutic uses of existing drugs. It has emerged as a promising strategy in the quest to combat AD. Various classes of repurposed drugs, such as antidiabetic, antihypertensive, antimicrobial, and anti-inflammatory, have shown potential neuroprotective effects in preclinical and clinical studies. These drugs act by combating free radicals generation, neuroinflammation, amyloid-beta aggregation, and tau hyper-phosphorylation. Furthermore, repurposing offers several advantages, including reduced time and cost compared to de novo drug development. It holds immense promise as a complementary approach to traditional drug discovery. Future research efforts should focus on elucidating the underlying mechanisms of repurposed drugs in AD, optimizing drug combinations, and conducting large-scale clinical trials to validate their efficacy and safety profiles. This review overviews recent advancements and findings in preclinical and clinical fields of different repurposed drugs for AD treatment.