Tomonaga-Luttinger Liquid Parameters in Multiwalled Nanotubes

被引:0
作者
Grigoryan, Naira [1 ]
Chudzinski, Piotr [1 ,2 ]
机构
[1] Polish Acad Sci, Inst Fundamental Technol Res, Adolfa Pawinskiego 5b, PL-02106 Warsaw, Poland
[2] Queens Univ Belfast, Sch Math & Phys, Univ Rd, Belfast BT7 1NN, North Ireland
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2025年 / 262卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
coulomb interaction in 1D; multiwalled nanotubes; single-wall nanotubes; tomonaga-luttinger liquid; CARBON NANOTUBES; FERMIONS; BEHAVIOR; MODEL;
D O I
10.1002/pssb.202400524
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Tomonaga-Luttinger liquid (TLL) theory is a canonical formalism used to describe 1D metals, where the low-energy physics is determined by collective Bosonic excitations. Herein, a theoretical model to compute the parameters of Tomonaga-Luttinger liquid (TLL) in multiwalled nanotubes (MWNTs) is presented. MWNTs introduce additional complexity to the usual Fermionic chains due to interactions and hybridization between their multiple coaxial shells. A model in which conducting paths along the length of the MWNTs are randomly distributed among the shells is considered. Since the valley degree of freedom remains a good quantum number, the TLL description in addition to spin and charge contains also valley degree of freedom and hence four-mode description applies. The values of all four TLL parameters are obtained for this model. A surprising outcome is that the compressibility of the holon mode becomes a universal quantity, while the parameters of neutral modes will depend on the details of intershell coupling. Finally, experiments where predictions can be tested are proposed.
引用
收藏
页数:10
相关论文
共 57 条
[1]   Electronic spectrum and tunneling properties of multiwall carbon nanotubes [J].
Abrikosov, AA ;
Livanov, DV ;
Varlamov, AA .
PHYSICAL REVIEW B, 2005, 71 (16)
[2]  
Altland A., 2010, Condensed Matter Field Theory
[3]   Multiwall carbon nanotubes filled with Al4C3: Spectroscopic signatures for electron-phonon coupling due to doping process [J].
Araujo, P. T. ;
Barbosa Neto, N. M. ;
Sousa, M. E. S. ;
Angelica, R. S. ;
Simoes, S. ;
Vieira, M. F. G. ;
Dresselhaus, M. S. ;
Leite dos Reis, M. A. .
CARBON, 2017, 124 :348-356
[4]   Crossover from the luttinger-liquid to coulomb-blockade regime in carbon nanotubes -: art. no. 186403 [J].
Bellucci, S ;
González, J ;
Onorato, P .
PHYSICAL REVIEW LETTERS, 2005, 95 (18)
[5]   Optical redshift in the Raman scattering spectra of Fe-doped multiwalled carbon nanotubes: Experiment and theory [J].
Bhalerao, G. M. ;
Singh, M. K. ;
Sinha, A. K. ;
Ghosh, Haranath .
PHYSICAL REVIEW B, 2012, 86 (12)
[6]   Field emission from carbon nanotubes:: the first five years [J].
Bonard, JM ;
Kind, H ;
Stöckli, T ;
Nilsson, LA .
SOLID-STATE ELECTRONICS, 2001, 45 (06) :893-914
[7]   A Timoshenko beam model for vibration analysis of chiral single-walled carbon nanotubes [J].
Boumia, Lakhdar ;
Zidour, Mohamed ;
Benzair, Abdelnour ;
Tounsi, Abdelouahed .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2014, 59 :186-191
[8]   RENORMALIZATION OF TRANSVERSE HOPPING INTEGRAL IN QUASI-1D CONDUCTORS [J].
CARON, LG ;
BOURBONNAIS, C .
SYNTHETIC METALS, 1988, 27 (1-2) :A67-A74
[9]   Interaction induced dimerization in zigzag single wall carbon nanotubes [J].
Carr, Sam T. ;
Gogolin, Alexander O. ;
Nersesyan, Alexander A. .
PHYSICAL REVIEW B, 2007, 76 (24)
[10]   Thermal disruption of a Luttinger liquid [J].
Cavazos-Cavazos, Danyel ;
Senaratne, Ruwan ;
Kafle, Aashish ;
Hulet, Randall G. .
NATURE COMMUNICATIONS, 2023, 14 (01)