Nonlinear dynamics of the actuated fluidic pinball - Steady, periodic, and chaotic regimes

被引:0
作者
Deng, Nan [1 ]
Noack, Bernd R. [1 ,2 ]
Maceda, Guy Y. Cornejo [1 ,3 ]
Pastur, Luc R. [4 ]
机构
[1] Harbin Inst Technol, Chair Artificial Intelligence & Aerodynam, Sch Mech Engn & Automat, Shenzhen 518055, Guangdong, Peoples R China
[2] Harbin Inst Technol, Guangdong Prov Key Lab Intelligent Morphing Mech &, Shenzhen 518055, Guangdong, Peoples R China
[3] Univ Carlos III Madrid, Dept Aerosp Engn, Leganes 28911, Spain
[4] Inst Polytech Paris, Mech Engn Dept, Pole Mecan, ENSTA, F-91120 Palaiseau, France
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Nonlinear dynamics; Wakes; Low-dimensional models; Clustering; FLOW; WAKE; IDENTIFICATION; CYLINDERS; CLUSTER; MODEL; TRANSITION;
D O I
10.1016/j.chaos.2025.116075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study explores the high-dimensional multi-scale flow dynamics of a multiple-input and multiple-output configuration, the fluidic pinball, at Re = 100. A data-driven classification approach is used to categorize flow dynamics into steady, periodic, and chaotic regimes by clustering. The key enabler is the parameterization of the control variables using three actuation parameters, simplifying the analysis and identification of flow regime transitions. The results highlight the effects of changes in the three actuation parameters on flow stability and transitions, emphasizing how boat-tailing, Magnus effect, and stagnation point actuation influence flow structure. A transition diagram maps the steady-to-chaotic scenario, revealing smooth boundaries for steady-to-periodic transitions and complex, fractal-like boundaries for transitions to chaos. This work enhances understanding and parametric modeling capabilities for the actuated flow dynamics, contributing to more effective control strategies in engineering applications involving bluff body flows and multiple-input systems.
引用
收藏
页数:14
相关论文
共 50 条
[41]   Effect of a permanent magnetic field on quasi-periodic and chaotic oscillation regimes in solid-state ring lasers [J].
Aleshin, DA ;
Kravtsov, NV ;
Lariontsev, EG ;
Chekina, SN .
QUANTUM ELECTRONICS, 2005, 35 (01) :7-12
[42]   A parallelization method for time periodic steady state in simulation of radio frequency sheath dynamics [J].
Kwon, Deuk-Chul ;
Shin, Sung-Sik ;
Yu, Dong-Hun .
COMPUTER PHYSICS COMMUNICATIONS, 2017, 219 :297-302
[43]   Discovering dynamics and parameters of nonlinear oscillatory and chaotic systems from partial observations [J].
Stepaniants, George ;
Hastewell, Alasdair D. ;
Skinner, Dominic J. ;
Totz, Jan F. ;
Dunkel, Jorn .
PHYSICAL REVIEW RESEARCH, 2024, 6 (04)
[44]   Nonlinear Dynamics of the Formation of a Periodic Superstructure of Impurity Bands during Rapid Directional Solidification of Binary Alloys [J].
Chevrychkina, A. A. ;
Bessonov, N. M. ;
Korzhenevskii, A. L. .
PHYSICS OF THE SOLID STATE, 2019, 61 (11) :2096-2103
[45]   Chaotic dynamics with high complexity in a simplified new nonautonomous nonlinear electronic circuit [J].
Arulgnanam, A. ;
Thamilmaran, K. ;
Daniel, M. .
CHAOS SOLITONS & FRACTALS, 2009, 42 (04) :2246-2253
[46]   Nonlinear dynamics and chaotic control of a flexible multibody system with uncertain joint clearance [J].
Wang, Zhe ;
Tian, Qiang ;
Hu, Haiyan ;
Flores, Paulo .
NONLINEAR DYNAMICS, 2016, 86 (03) :1571-1597
[47]   Nonlinear motion regimes and phase dynamics of a free standing hybrid riser system subjected to ocean current and vessel motion [J].
Zhang, Cheng ;
Lu, Lin ;
Cao, Qianying ;
Cheng, Liang ;
Tang, Guoqiang .
OCEAN ENGINEERING, 2022, 252
[48]   Nonlinear dynamics and chaos in micro/nanoelectromechanical beam resonators actuated by two-sided electrodes [J].
Gusso, Andre ;
Viana, Ricardo L. ;
Mathias, Amanda C. ;
Caldas, Ibere L. .
CHAOS SOLITONS & FRACTALS, 2019, 122 :6-16
[49]   Population dynamics in canopy gaps: nonlinear response to variable light regimes by an understory plant [J].
Scanga, Sara E. .
PLANT ECOLOGY, 2014, 215 (08) :927-935
[50]   Nonlinear Complexity and Chaotic Behaviors on Finite-Range Stochastic Epidemic Financial Dynamics [J].
Wang, Guochao ;
Zheng, Shenzhou ;
Wang, Jun .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (06)