Nonlinear dynamics of the actuated fluidic pinball - Steady, periodic, and chaotic regimes

被引:0
|
作者
Deng, Nan [1 ]
Noack, Bernd R. [1 ,2 ]
Maceda, Guy Y. Cornejo [1 ,3 ]
Pastur, Luc R. [4 ]
机构
[1] Harbin Inst Technol, Chair Artificial Intelligence & Aerodynam, Sch Mech Engn & Automat, Shenzhen 518055, Guangdong, Peoples R China
[2] Harbin Inst Technol, Guangdong Prov Key Lab Intelligent Morphing Mech &, Shenzhen 518055, Guangdong, Peoples R China
[3] Univ Carlos III Madrid, Dept Aerosp Engn, Leganes 28911, Spain
[4] Inst Polytech Paris, Mech Engn Dept, Pole Mecan, ENSTA, F-91120 Palaiseau, France
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Nonlinear dynamics; Wakes; Low-dimensional models; Clustering; FLOW; WAKE; IDENTIFICATION; CYLINDERS; CLUSTER; MODEL; TRANSITION;
D O I
10.1016/j.chaos.2025.116075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study explores the high-dimensional multi-scale flow dynamics of a multiple-input and multiple-output configuration, the fluidic pinball, at Re = 100. A data-driven classification approach is used to categorize flow dynamics into steady, periodic, and chaotic regimes by clustering. The key enabler is the parameterization of the control variables using three actuation parameters, simplifying the analysis and identification of flow regime transitions. The results highlight the effects of changes in the three actuation parameters on flow stability and transitions, emphasizing how boat-tailing, Magnus effect, and stagnation point actuation influence flow structure. A transition diagram maps the steady-to-chaotic scenario, revealing smooth boundaries for steady-to-periodic transitions and complex, fractal-like boundaries for transitions to chaos. This work enhances understanding and parametric modeling capabilities for the actuated flow dynamics, contributing to more effective control strategies in engineering applications involving bluff body flows and multiple-input systems.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] The fluidic pinball with symmetric forcing displays steady, periodic, quasi-periodic, and chaotic dynamics
    Liu, Yanting
    Deng, Nan
    Noack, Bernd R.
    Wang, Xin
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2024, 38 (02) : 203 - 223
  • [2] Bifurcations of periodic and chaotic attractors in pinball billiards with focusing boundaries
    Arroyo, Aubin
    Markarian, Roberto
    Sanders, David P.
    NONLINEARITY, 2009, 22 (07) : 1499 - 1522
  • [3] Control of periodic dynamics of nonlinear and chaotic discrete dynamical systems
    Kesmia, Mounira
    Boughaba, Soraya
    Jacquir, Sabir
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (04):
  • [4] NONLINEAR DYNAMICS IN ADAPTIVE-CONTROL - CHAOTIC AND PERIODIC STABILIZATION
    MAREELS, IMY
    BITMEAD, RR
    AUTOMATICA, 1986, 22 (06) : 641 - 655
  • [5] NONLINEAR DYNAMICS OF FORCED TRANSITIONAL JETS - PERIODIC AND CHAOTIC ATTRACTORS
    BROZE, G
    HUSSAIN, F
    JOURNAL OF FLUID MECHANICS, 1994, 263 : 93 - 132
  • [6] Nonlinear optomechanical systems with quasi-periodic and chaotic dynamics
    Saiko, A. P.
    Rusetsky, G. A.
    Markevich, S. A.
    Fedaruk, R.
    PHYSICS LETTERS A, 2025, 544
  • [7] Dynamics Identification of Fluidic Muscle-actuated Planar Manipulator Using Two Nonlinear Models
    Trojanova, Monika
    Hosovsky, Alexander
    2020 IEEE 18TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2020), 2020, : 35 - 40
  • [8] Control of periodic dynamics of nonlinear and chaotic discrete dynamical systems
    Mounira Kesmia
    Soraya Boughaba
    Sabir Jacquir
    Computational and Applied Mathematics, 2019, 38
  • [9] Galerkin force model for transient and post-transient dynamics of the fluidic pinball
    Deng, Nan
    Noack, Bernd R.
    Morzyński, Marek
    Pastur, Luc R.
    Journal of Fluid Mechanics, 2021, 918
  • [10] Galerkin force model for transient and post-transient dynamics of the fluidic pinball
    Deng, Nan
    Noack, Bernd R.
    Morzynski, Marek
    Pastur, Luc R.
    JOURNAL OF FLUID MECHANICS, 2021, 918