A Relaxed Decoupled Second-Order Energy-Stable Scheme for the Binary Phase-Field Crystal Model

被引:0
作者
Zhang, Xin [1 ]
Yang, Junxiang [1 ]
Tan, Zhijun [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Peoples R China
关键词
Key words; Binary phase-field crystal; unconditional energy stability; relaxed technique; second- order scheme; FINITE-DIFFERENCE SCHEME; NUMERICAL SCHEMES; ERROR ANALYSIS; EFFICIENT; 1ST; CONVERGENCE;
D O I
10.4208/eajam.2023-159.170324
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we construct a relaxed second-order time-accurate scheme for the binary phase-field crystal model based on the recent paper [J. Wu, J. Yang and Z. Tan, Eng. Comput. (2023)]. This scheme can significantly improve the consistency between original and modified energies. Using the exponential SAV method, we construct the first- and second-order time-accurate schemes by using the backward Euler formula and the second-order backward difference formula, respectively. Then a new second-order numerical scheme with relaxation is developed. This new numerical scheme satisfies the energy dissipation law. Meanwhile, it is fully decoupled and efficient. Extensive numerical experiments are carried out in 2D and 3D to verify the accuracy and stability of the proposed scheme, as well as its ability to improve the consistency between the original energy and modified energy.
引用
收藏
页数:29
相关论文
共 38 条
  • [1] CONVERGENCE ANALYSIS OF A SECOND ORDER CONVEX SPLITTING SCHEME FOR THE MODIFIED PHASE FIELD CRYSTAL EQUATION
    Baskaran, A.
    Lowengrub, J. S.
    Wang, C.
    Wise, S. M.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (05) : 2851 - 2873
  • [2] Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation
    Baskaran, Arvind
    Hu, Zhengzheng
    Lowengrub, John S.
    Wang, Cheng
    Wise, Steven M.
    Zhou, Peng
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 250 : 270 - 292
  • [3] Phase-field crystal modeling and classical density functional theory of freezing
    Elder, K. R.
    Provatas, Nikolas
    Berry, Joel
    Stefanovic, Peter
    Grant, Martin
    [J]. PHYSICAL REVIEW B, 2007, 75 (06)
  • [4] Amplitude expansion of the binary phase-field-crystal model
    Elder, K. R.
    Huang, Zhi-Feng
    Provatas, Nikolas
    [J]. PHYSICAL REVIEW E, 2010, 81 (01):
  • [5] Elder KR, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.051605
  • [6] Modeling elasticity in crystal growth
    Elder, KR
    Katakowski, M
    Haataja, M
    Grant, M
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (24) : 2457011 - 2457014
  • [7] Lattice Boltzmann Modeling of Cholesteric Liquid Crystal Droplets Under an Oscillatory Electric Field
    Fadda, F.
    Lamura, A.
    Tiribocchi, A.
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2023, 33 (01) : 118 - 143
  • [8] A linear second-order in time unconditionally energy stable finite element scheme for a Cahn-Hilliard phase-field model for two-phase incompressible flow of variable densities
    Fu, Guosheng
    Han, Daozhi
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 387
  • [9] A High Order Adaptive Time-Stepping Strategy an d Local Discontinuous Galerkin Method for the Modified Phase Field Crystal Equation
    Guo, Ruihan
    Xu, Yan
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 24 (01) : 123 - 151
  • [10] Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation
    Hu, Z.
    Wise, S. M.
    Wang, C.
    Lowengrub, J. S.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (15) : 5323 - 5339