A System of Tensor Equations over the Dual Split Quaternion Algebra with an Application

被引:4
作者
Yang, Liuqing [1 ]
Wang, Qing-Wen [1 ,2 ]
Kou, Zuliang [3 ]
机构
[1] Shanghai Univ, Newtouch Ctr Math, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Collaborat Innovat Ctr Marine Artificial Intellige, Shanghai 200444, Peoples R China
[3] Shanghai Newtouch Software Co Ltd, Shanghai 200127, Peoples R China
基金
中国国家自然科学基金;
关键词
dual split quaternion tensor equation; Einstein product; real representation; eta-Hermitian solution; Moore-Penrose inverse; MATRIX EQUATIONS; AX; ROTATIONS; INVERSE; XC;
D O I
10.3390/math12223571
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a definition of block tensors and the real representation of tensors. Equipped with the simplification method, i.e., the real representation along with the M-P inverse, we demonstrate the conditions that are necessary and sufficient for the system of dual split quaternion tensor equations (A & lowast;NX,X & lowast;SC)=(B,D), when its solution exists. Furthermore, the general expression of the solution is also provided when the solution of the system exists, and we use a numerical example to validate it in the last section. To the best of our knowledge, this is the first time that the aforementioned tensor system has been examined on dual split quaternion algebra. Additionally, we provide its equivalent conditions when its Hermitian solution X=X & lowast; and eta-Hermitian solutions X=X eta & lowast; exist. Subsequently, we discuss two special dual split quaternion tensor equations. Last but not least, we propose an application for encrypting and decrypting two color videos, and we validate this algorithm through a specific example.
引用
收藏
页数:23
相关论文
共 42 条
[1]  
Adler S.L., 1995, Quaternionic Quantum Mechanics and Quantum Fields. International Series of Monographs on Physics, VVolume 88, DOI [10.1093/oso/9780195066432.001.0001, DOI 10.1093/OSO/9780195066432.001.0001]
[2]   SPLIT QUATERNION MATRICES [J].
Alagoz, Yasemin ;
Oral, Kursat Hakan ;
Yuce, Salim .
MISKOLC MATHEMATICAL NOTES, 2012, 13 (02) :223-232
[3]   A New Polar Representation for Split and Dual Split Quaternions [J].
Atasoy, Ali ;
Ata, Erhan ;
Yayli, Yusuf ;
Kemer, Yasemin .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (03) :2307-2319
[4]   The Lorentz Group Using Conformal Geometric Algebra and Split Quaternions for Color Image Processing: Theory and Practice [J].
Bayro-Corrochano, Eduardo ;
Vazquez-Flores, Zuleima ;
Uriostegui-Legorreta, Ulises .
IEEE ACCESS, 2023, 11 :56785-56800
[5]   SOLVING MULTILINEAR SYSTEMS VIA TENSOR INVERSION [J].
Brazell, M. ;
Li, N. ;
Navasca, C. ;
Tamon, C. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (02) :542-570
[6]  
Chen C, 2019, Arxiv, DOI [arXiv:1905.07427, 10.48550/arXiv.1905.07427, DOI 10.48550/ARXIV.1905.07427]
[7]   Dual Quaternion Matrix Equation AXB = C with Applications [J].
Chen, Yan ;
Wang, Qing-Wen ;
Xie, Lv-Ming .
SYMMETRY-BASEL, 2024, 16 (03)
[8]  
Clifford W.K., 1873, Proc. Lond. Math. Soc., V1-4, P381, DOI DOI 10.1112/PLMS/S1-4.1.381
[9]  
Cockle J., 1849, PHILOS MAG, V35, P434, DOI DOI 10.1080/14786444908646384
[10]  
Diatta A, 2024, Arxiv, DOI [arXiv:2310.02114, 10.48550/arXiv.2310.02114, DOI 10.48550/ARXIV.2310.02114]