Confined In Situ Synthesis of Uniformly Distributed Mixed Matrix Membranes via Solvent Evaporation for Efficient CO2 Capture

被引:0
作者
Li, Zhiying [1 ,2 ,3 ]
Li, Haotong [4 ]
Jin, Chuanlong [2 ,5 ]
Li, Jianbo [6 ]
Bao, Junjiang [2 ,5 ]
Zhang, Xiaopeng [2 ,5 ]
Zhang, Ning [2 ,5 ]
He, Gaohong [2 ,5 ]
Chen, Cong [1 ,3 ]
Song, Yongchen [1 ,3 ]
机构
[1] Dalian Univ Technol, Sch Energy & Power Engn, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Chem Engn Ocean & Life Sci, Panjin 124221, Peoples R China
[3] Dalian Univ Technol, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116024, Peoples R China
[4] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117585, Singapore
[5] Dalian Univ Technol, State Key Lab Fine Chem, Dalian 116023, Peoples R China
[6] Shandong Univ Sci & Technol, Sch Mech & Elect Engn, Qingdao 266000, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon capture; confined crystallization; mixed matrix membranes; polymer of intrinsic microporosity; solvent evaporation; POLYMERS;
D O I
10.1002/adfm.202420713
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The fabrication of polymers of intrinsic microporosity (PIMs)-based mixed matrix membranes (MMMs) is an effective strategy to combine the superior selectivity of porous nanofillers and the high gas permeability of PIMs, which is expected to be a new generation of membrane for efficient CO2 capture. However, the aggregation and sedimentation of the nanofillers along with their insufficient interfacial compatibility with PIMs matrix often result in uncontrollable defects and non-selective voids among the polymer matrix, which seriously deteriorate the anticipated gas separation performance. For the first time, this work proposes a "solvent-evaporation-induced-confinement" strategy for in situ growth of zeolitic imidazole framework-90 (ZIF-90) nanofillers throughout amidoxime-functionalized PIM-1 (AOPIM-1) matrix. The defect-free microporous membrane exhibits a uniform distribution of highly loaded nanofillers with excellent PIMs-MOF interfacial compatibility. The optimized AOPIM-1/ZIF-90 (AO/ZIF) MMM exhibits an exceptional CO2 separation performance with the CO2/N2 and CO2/CH4 selectivity of 42.08 and 71.25, respectively, and a CO2 gas permeability of 1719.1 Barrer. In addition, in situ preparation of ZIF-8 and ZIF-67 nanofillers among the AOPIM-1 matrix further confirms the versatility of the proposed "solvent-evaporation-induced-confinement" strategy. The proposed strategy presents a versatile approach to achieve tunable growth of MOF nanofillers for the preparation of high-performance PIMs-based MMMs for carbon capture.
引用
收藏
页数:8
相关论文
共 39 条
  • [21] Carbon Dioxide Capture, Utilization, and Sequestration: Current Status, Challenges, and Future Prospects for Global Decarbonization
    Nagireddi, Srinu
    Agarwal, Jatin R.
    Vedapuri, Damodaran
    [J]. ACS ENGINEERING AU, 2023, 4 (01): : 22 - 48
  • [22] Covalent modification of ZIF-90 for uranium adsorption from seawater
    Qin, Xudong
    Yang, Weiting
    Yang, Weikang
    Ma, Yu
    Li, Meiling
    Chen, Chen
    Pan, Qinhe
    [J]. MICROPOROUS AND MESOPOROUS MATERIALS, 2021, 323
  • [23] Coordination-driven structure reconstruction in polymer of intrinsic microporosity membranes for efficient propylene/propane separation
    Ren, Yanxiong
    Chong, Boyang
    Xu, Wei
    Zhang, Zhengqing
    Liu, Lin
    Wu, Yingzhen
    Liu, Yutao
    Jiang, Haifei
    Liang, Xu
    Wu, Hong
    Zhang, Hongjun
    Ye, Bangjiao
    Zhong, Chongli
    He, Guangwei
    Jiang, Zhongyi
    [J]. INNOVATION, 2022, 3 (06):
  • [24] Polymer engineering by blending PIM-1 and 6FDA-DAM for ZIF-8 containing mixed matrix membranes applied to CO2 separations
    Sanchez-Lainez, Javier
    Pardillos-Ruiz, Alberto
    Carta, Mariolino
    Malpass-Evans, Richard
    McKeown, Neil B.
    Tellez, Carlos
    Coronas, Joaquin
    [J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 224 : 456 - 462
  • [25] Adamantane-grafted polymer of intrinsic microporosity with finely tuned interchain spacing for improved CO2 separation performance
    Wang, Zhenggong
    Shen, Qin
    Liang, Jiachen
    Zhang, Yatao
    Jin, Jian
    [J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 233
  • [26] Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation
    Wang, Zhenggong
    Ren, Huiting
    Zhang, Shenxiang
    Zhang, Feng
    Jin, Jian
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (22) : 10968 - 10977
  • [27] Covalent-Linking-Enabled Superior Compatibility of ZIF-8 Hybrid Membrane for Efficient Propylene Separation
    Wang, Ziyang
    Wang, Wenjian
    Zeng, Tao
    Ma, Dan
    Zhang, Panpan
    Zhao, Siqi
    Yang, Li
    Zou, Xiaoqin
    Zhu, Guangshan
    [J]. ADVANCED MATERIALS, 2022, 34 (06)
  • [28] Viscosity-driven in situ self-assembly strategy to fabricate cross-linked ZIF-90/PVA hybrid membranes for ethanol dehydration via pervaporation
    Wei, Zhong
    Liu, Qiang
    Wu, Chunlin
    Wang, Heyun
    Wang, Hao
    [J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2018, 201 : 256 - 267
  • [29] Nanoporous ZIF-67 embedded polymers of intrinsic microporosity membranes with enhanced gas separation performance
    Wu, Xingyu
    Liu, Wei
    Wu, Hong
    Zong, Xue
    Yang, Leixin
    Wu, Yingzhen
    Ren, Yanxiong
    Shi, Chengyou
    Wang, Shaofei
    Jiang, Zhongyi
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2018, 548 : 309 - 318
  • [30] MOF Scaffold for a High-Performance Mixed-Matrix Membrane
    Xie, Ke
    Fu, Qiang
    Webley, Paul A.
    Qiao, Greg G.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (28) : 8597 - 8602