Combination of exhaled volatile organic compounds with serum biomarkers predicts respiratory infection severity

被引:0
作者
Esteban, Patricia [1 ]
Letona-Gimenez, Santiago [2 ,3 ]
Domingo, Maria Pilar [1 ]
Morte, Elena [2 ,3 ,4 ]
Pellejero-Sagastizabal, Galadriel [2 ,3 ]
Encabo, Maria Del Mar [5 ]
Ramirez-Labrada, Ariel [3 ,4 ]
Sanz-Pamplona, Rebeca [3 ,6 ,7 ,8 ]
Pardo, Julian [3 ,4 ,9 ]
Pano, Jose Ramon [2 ,3 ,4 ]
Galvez, Eva M. [1 ,4 ]
机构
[1] Inst Carboquim ICB CSIC, Zaragoza, Spain
[2] Hosp Clin Univ Lozano Blesa, Serv Enfermedades Infecciosas, Zaragoza, Spain
[3] Fdn Inst Invest Sanitaria Aragon IIS Aragon, Biomed Res Ctr Aragon CIBA, Zaragoza, Spain
[4] Inst Salud Carlos III, CIBERINFEC, ISCIII CIBER Enfermedades Infecciosas, Madrid, Spain
[5] IACS, Biobank Aragon Hlth Syst, Zaragoza, Spain
[6] Inst Salud Carlos III, CIBERESP, ISCIII CIBER Epidemiol & Salud Publ, Madrid, Spain
[7] Fdn Agencia Aragonesa Invest & Desarrollo ARAID, Zaragoza, Spain
[8] Hosp Clin Univ Lozano Blesa, Canc Heterogene & Immun Grp, Zaragoza, Spain
[9] Univ Zaragoza, Fac Med, Dept Microbiol Pediat Radiol & Salud Publ, Area Inmunol, Zaragoza, Spain
来源
PULMONOLOGY | 2025年 / 31卷 / 01期
关键词
Machine learning; respiratory infections; volatile organic compounds; serum biomarkers; severity prediction; COVID-19; BREATH; DISCRIMINATION; DISEASE;
D O I
10.1080/25310429.2025.2477911
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Objective: During respiratory infections, host-pathogen interaction alters metabolism, leading to changes in the composition of expired volatile organic compounds (VOCs) and soluble immunomodulators. This study aims to identify VOC and blood biomarker signatures to develop machine learning-based prognostic models capable of distinguishing infections with similar symptoms. Methods: Twenty-one VOCs and fifteen serum biomarkers were quantified in samples from 86 COVID-19 patients, 75 patients with non-COVID-19 respiratory infections, and 72 healthy donors. The populations were categorized into severity subgroups based on their oxygen support requirements. Descriptive and statistical analyses were conducted to assess group differentiation. Additionally, machine learning classifiers were developed to predict disease severity in both COVID-19 and non-COVID-19 patients. Results: VOC and biomarker profiles differed significantly among groups. Random Forest models demonstrated the best performance for severity prediction. The COVID-19 model achieved 93% accuracy, 100% sensitivity, and 89% specificity, identifying IL-6, IL-8, thrombomodulin, and toluene as key severity predictors. In non-COVID-19 patients, the model reached 89% accuracy, 100% sensitivity, and 67% specificity, with CXCL10 and methyl-isobutyl-ketone as key markers. Conclusion: VOCs and serum biomarkers differentiated HD, COVID-19, and non-COVID-19 patients, and enabled the development of high-performance severity prediction models. While promising, these findings require validation in larger independent cohorts.
引用
收藏
页数:11
相关论文
共 48 条
[1]   Exhaled Volatile Organic Compounds of Infection: A Systematic Review [J].
Ahmed, Waqar M. ;
Lawal, Oluwasola ;
Nilsen, Tamara M. ;
Goodacre, Royston ;
Fowler, Stephen J. .
ACS INFECTIOUS DISEASES, 2017, 3 (10) :695-710
[2]   The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva [J].
Amann, Anton ;
Costello, Ben de Lacy ;
Miekisch, Wolfram ;
Schubert, Jochen ;
Buszewski, Boguslaw ;
Pleil, Joachim ;
Ratcliffe, Norman ;
Risby, Terence .
JOURNAL OF BREATH RESEARCH, 2014, 8 (03)
[3]   Breath Biopsy and Discovery of Exclusive Volatile Organic Compounds for Diagnosis of Infectious Diseases [J].
Belizario, Jose E. ;
Faintuch, Joel ;
Malpartida, Miguel Garay .
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2021, 10
[4]   Breath Metabolites to Diagnose Infection [J].
Berna, Amalia Z. ;
John, Audrey R. Odom .
CLINICAL CHEMISTRY, 2022, 68 (01) :43-51
[5]   Cytokines Induced During Influenza Virus Infection [J].
Betakova, Tatiana ;
Kostrabova, Anna ;
Lachova, Veronika ;
Turianova, Lucia .
CURRENT PHARMACEUTICAL DESIGN, 2017, 23 (18) :2616-2622
[6]   Biomarkers for Prognosis and Treatment Response in COVID-19 Patients [J].
Bivona, Giulia ;
Agnello, Luisa ;
Ciaccio, Marcello .
ANNALS OF LABORATORY MEDICINE, 2021, 41 (06) :540-548
[7]   Role of the intestinal microbiota in host defense against respiratory viral infections [J].
Boncheva, Idia ;
Poudrier, Johanne ;
Falcone, Emilia L. .
CURRENT OPINION IN VIROLOGY, 2024, 66
[8]   Cytokine responses in patients with mild or severe influenza A(H1N1)pdm09 [J].
Bradley-Stewart, A. ;
Jolly, L. ;
Adamson, W. ;
Gunson, R. ;
Frew-Gillespie, C. ;
Templeton, K. ;
Aitken, C. ;
Carman, W. ;
Cameron, S. ;
McSharry, C. .
JOURNAL OF CLINICAL VIROLOGY, 2013, 58 (01) :100-107
[9]   Effect of IL-6, IL-8/CXCL8, IP-10/CXCL 10 levels on the severity in COVID 19 infection [J].
Can, Fatma Kesmez ;
Ozkurt, Zulal ;
Ozturk, Nurinnisa ;
Sezen, Selma .
INTERNATIONAL JOURNAL OF CLINICAL PRACTICE, 2021, 75 (12)
[10]   Interleukin-6 in Covid-19: A systematic review andmeta-analysis [J].
Coomes, Eric A. ;
Haghbayan, Hourmazd .
REVIEWS IN MEDICAL VIROLOGY, 2020, 30 (06) :1-9